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EXECUTIVE SUMMARY

This report is the fourth of four Editions of the Program Office Guide to Ada. Col-
lectively. these editions complement the Program Manager’s Guide to Ada, ESD-TR-85-
159, dated May 1985. This effort was sponsored by the Air Force Computer Resource
Management Technology Program, Program Element 64740F, Project 2526, Software
Engineering Tools and Methods. The SEI (Software Engineering Institute) has an on-
going effort to study Ada related issues and will publish handbooks on their findings on

a periodic basis.

The goal of the four supplemental editions has been to discuss the transition of
Ada into the life cvcle phases, into different classes of software, and into the acquisition
process. Software engineering concepts, methods, standards, and environments are dis-
cussed extensively. The relationship between Ada and software engineering is explored
hoth from the viewpoint of usage and tools. Management concerns on cost, policy, and
progress evaluation are also reviewed.

Fdition 1 addressed: policy, run-time efliciency, run-time support environment cus-
tomization. training. Ada program design languages, and conversion of non-Ada code.

Edition 2 addressed: DoD Standards 2167 and 2168, guidelines for proposal evalua-
tion. reusability and portability considerations, software costing models. benchmarking
efforts, and Ada software libraries.

Edition 3 addressed: maintenance of the Ada Standard. Ada Education and Train-

ing Study. program proving and verification. environments. tools, interfaces. and computer-

aided software engineering.

Edition 4 discusses:

e Ada usage issues.

e policy updates,

e progress on benchmarks.

e the use of Ada in simulation,

e lessons learned on Ada projects,
o distributed processing,

e real-time issues, and

e contractor evaluation.
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A well-written Ada program is supposed to satisfy criteria such as readability, modu-
larity, and extendability. The proper use of language constructs and coding style enables
the code to meet these criteria. Moreover, practical experience on Ada projects to date
has also validated the fact that Ada “delivers” on many of the software engineering
concepts it is intended to support.

Ada technology has greatly improved during the last few years. Inefficiency and tool
immaturity have been the major complaints of Ada users to date. Vendors have passed
the first milestone, validation. and are now concentrating on run-time system support
and performance goals. Standardized sets of benchmark suites are becoming available,
enabling more meaningful comparisons of Ada products. As experience with benchmarks
continues to grow, guidelines are emerging on their installation and execution.

Software engineers are using Ada on a wide variety of projects. including real-time
systems, distributed systems. and simulation. Ada supports both traditional real-time
development and new, more flexible approaches. Some designs may require customized
run-time systems. providing support for the unit of distribution, internode communi-
cation and error handling. a run-time system scheduler, and discrete event simulation.
Research shows promise of a hybrid method of development that combines the advan:
tages of the two existing methods.

In 1987 a major policy milestone was achieved with the signing of Department of
Defense (DoD) Directives 3405.1 and 3405.2, mandating the use of Ada for all defeuse-
related software. The implementation of this policy should serve as a clear signal within
the DoD and industry that the time for transition to Ada is now. The fact that contrac-
tors must now use Ada has motivated studies in software productivity metrics to aid in
contractor evaluation.

iv
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FOREWORD

This report is the fourth in a series of four editions that supplement the Program
Manager’s Guide 0 Ada, ESD-TR-85-159, published by The Computer Resource Man-
age;nent Technology Program in May, 1985. The introduction of Ada as the mandated
high order language for Mission Critical Computer Programming in the Department of

Defense has generated a need for clear, concise information for program managers and

others concerned with cost, schedule, and performance in the application of this new
language.

The intent of this series is to bring Program Office personnel up to date on facts
presented in the original Program Manager’s Guide, as well as to provide a more
rounded discussion on certain subjects presented in the original guide. This series
of four reports is designed for the program manager and his technical staff. It is
recommended that the four editions comprising this report be kept with the original
Program Manager's Guide to Ada. forming a ready reference to Ada and Ada-related
topices.
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Section 22
Ada Usage Issues

To use the Ada standard to its fullest, it is important to understand the philosophy
behind the development of Ada. Good usage of Ada requires disciplined methodologies®.
using Ada features towards the application of the methodologies. and good programming
stvle. This section covers how Ada supports modern software engineering | ractices. with-
out discussing Ada svntax. Guidelines for Ada programming styvle are also presented.

22.1 Ada’s Suppcrt for Software Engineering

Ada was designed to he a general-purpose language. facilitating the development
of reliable and maintainable software. It was designed for embedded computer systems.
though it has been prov-n useful in other applications. such as data processing. The
language provides compile time detection of many coding errors and encourages modern
software engineering practices to ensure reliable code. Readability is emphasized through
programming conventions and proper use of its constructs.

Adais a large and powerful language. A programmer need not use all of the features
of the language 1n every program. It is both normal and appropriate to use just a subset
of the features. To use Ada to its fullest. a programmer needs proper training and tools.

Along with discussing the features particular to Ada. their advantages and disad-
vantages will be pointed out. Run-time efficiency, discussed in Edition 1, Section 3.2,
will not be further discussed here. This section is not meant to be a catalog of Ada
constructs: only selected features are discussed. These features are organized by topic

as follows:

e Modular structure,

o Scparate compilation,
e Abstraction.

e Structured control.

e Reusability, and

e Environment specific features.

’f’rugrammir;g r:r;ethurdologies have been discussed in Edition 1. Section 5, Ada Program Design
lL.anguage: Edition 2, Section 8. DoD-STD-2167 and Methodologies for Use with Ada; and Edition 2.
Sectinn 11. Reusability and Portability.
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The most versatile language feature is the package, different aspects of which are illus-
trated throughout this section.

22.1.1 Modular Structure

In many languages including Ada, a large program will be broken down inte nu-
merous modules to make it easier to understand. Modules usually perform a specific
function that can be separate from the rest of the program. If modifications need to be
made, modularity makes it easier to isolate the changes. The Ada view of the world is
not a strict hierarchy. though hierarchies are permitted and encouraged. It allows for
different threads of control as well as a combination of a network and a layered structure.
Ada provides several kinds of program units that aid modularity, namely. subprograms.
tasks, packages. and generics.

Subprograms may be either procedures or functions. They are similar to subroutines
in other languages. A fask is similar to a subprogram except it provides separate parallel
threads of control. often needed in real-time or concurrent processing. Packages are the
basic unit for structuring programs. A package is usually a grouping of similar program
elements that may be used by other parts of the program. For example. a package may
contain procedures, functions. type declarations. exception declarations. and tasks. A
generic unit can either be a package or a subprogram. A generic unit is a template from
which a non-generic unit can be obtained.

Ada is richer in programming structure constructs than other languages. which
results in a great degree of control over the program name space?. more manageable
parallel software development, and also a reduction in the “ripple effect™ of errors. It
is generally thought that better structured code leads to better quality code, because
it is easier to read and maintain. The existence of the different kinds of program units
makes 1t important to master new structuring techniques and the interrelationships of
the units.

There are some similarities and also some fundamental differences between the
classes of program units. The similarities are that each have a spccification and a body.
The specification satisfies a “need to know™ on the caller’s behalf. It defines the interface
to the other program units. In Ada, the information needed to call another unit is
intentionally isolated from the implementation of that unit. The purpose is to minimize
“coupling” and increase the independence of the units. The theory behind it is to force
the programmer to think in terms of the calling interfaces. The body contains the
implementation.

?Program name space refers to the set of names of program entities (variables. procedures, exception.
etc.) which are accessible (can be named) from a particular point in the program execution. Modern
software engineering practices encourage restricting the name space in order to isolate the effect of
program changes.

22-2




Packages are a relatively new concept; from a structure point of view, packages
permit an easy way to split a program into smaller, understandable units. Packages
promote maintainability by iocalizing changes, restricting the impact of a change. This
makes maintenance easier because as long as the interface (the package specification)
does not change, no other programs are affected by a modification to the corresponding
package body.

The ability to import a package is distinct from the capability to include a file
containing data and other routines. In other languages, include files are generally just
textual expansions at the specified location. In Ada however, packages provide a much
more selective mechanism because you bring in only the specification, although the body
of course will be automatically brought in so that the executable code is available at run-
time. Unlike traditional include files, packages provide the user with a very fine degree
of control over what data/functions are known and callable; mainly because a package
can be imported deep in the hierarchy of the program, so that higher-level modules are
unaware of it. It can be difficult to understand the static nature of packages. They
are containers rather then executable units, vet the compiler generates code for them.
Unlike traditional units. packages are not directly callable entities. though by importing
them one can call those entities defined in the package specification.

One of the hard things to learn about designing in Ada is how to allocate declara-
tions and code into different packages. Because packages are such a basic, fundamental
unit, the software allocation to different packages 1s effectively the program design. The
software should be allocated to minimize dependencies between packages, partly to limit
recompilation when modifying package specifications.

22.1.2 Separate Compilation

Generally, separate component compilation in other languages is best described as
being independent from other component compilations because there is no cross checking
and external references are generated for entities not self-contained. However, Ada
with a program library, provides separate compilation where each component’s external
references are checked against the component containing the references in the library.
This separate compilation is further enhanced by having the specification and body of
a component as individually compilable library units. The implication is that after the
high-level design establishes some top-level packages, the software development of the
modules can then proceed largely in parallel. Separately compilable units (of which
library units are a subset) include package specifications, packages bodies, procedures,
functions. generic units. and task bodies. Adaincludes a mechanism to break out smaller,
separatelv compilable units from a larger enclosing one.

The specifications can be compiled separately to check the validity of the interfaces.

22-3
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As a result, Ada identifies errors during the design, which is less costly than discovering
and correcting errors in the integration or testing phase.

The compilation of any separately compiled unit may depend on multiple program
units. The significance of this lies with the ability to control the name space. Rather
than import (include) a program unit at the top level of the hierarchy, it can be imported
such that it is only known to a low-level subunit.

Other languages, such as C, provide independent compilation of modules which are
compilable in any order. Independent compilation produces external references, without
performing the static ‘compile-time) interface checking that separate compilation in Ada
does. Because of the static interface checking between the component being compiled
and the components in the library, the programmer must pay attention to the order in
which he compiles the modules, although this is enforced by the compiler and/or linker.
The static interface checking forces the programmer to validate the design specifications
before proceeding with the package body.

22.1.3 Abstraction

Ada allows for the abstraction of data and algorithms. Features permit both data
and process encapsulation.

Ada is a strongly typed language. All objects must be declared and have a specific
type. Asinother languages, there are predefined types. Ada also allows the user to define
new types. User-defined types can have specific ranges and specified accuracy values.
Being able to define the range of a type allows the user to specifv design constraints.
For example, a body temperature thermometer could be represented by a real number
type from 85.0 to 110.0 with increments of 0.1. An advantage of strong typing is that
some errors in passing parameters and in performing comparisons and computations are
identified at compile time, rather than during execution. One of the potential pitfalls of
strong typing is for a user to define too many numeric types and then need to perform
type conversions to be able to perform operations on values in the different types. This
can be avoided by creating a few basic numeric types and then using these types as the
base for user-defined subtypes, enabling direct comparisons. A good up front design
could avoid these problems.

Understanding types in Ada may be difficult for programmers coming from a FOR-
TRAN or assembler background. It is likely that there will be confusion between types
and objects in the beginning. Furthermore. programmers may have trouble with the
concept of naming a value, as used in declaring enumeration types.

Packages allow the user to define abstract data types, one of the foundations of
object-oriented programming. All of the data in the specification will be visible to a
program that uses the package. A package specification can include the type declarations

22-4




for the variables used in the package, the names and parameters of the procedures and
functions contained in the package, the exceptions that are defined in the package, other
packages and tasks.

Besides controlling the scope by grouping all of the declarations together in a pack-
age specification, the programmer can extend the level of abstraction by “hiding” the
definition of a type from a calling program by declaring it a private type. This class of
declaration jmposes restrictions on the use of the type. Although a programmer want-
ing to use the package can “see” the private type declaration, his code cannot “use”
the information in this declaration. This is advantageous because if the calling program
doesn’t know how the type is defined and cannot see how the related subprograms are
implemented. then the code cannot be based on an implementation detail. This is an
advantage because, later. if the implementation in the package is changed. the calling
program will still be valid®.

Packages support an abstraction by grouping related subprogramns. The package
body has the full code for procedure, function bodies and other information that the
caller of the package entities does not need to know about. Often packages contain all
the possible uperations for a specific type. The users of the package do not know how the
package is implemented’. so they can not make decisions based on the implementation.

The Ada language permits the overloading of subprograms. Overloading is when
two or more distinct subprograms are identified by the same name®. This means that
the naming of routines is much more flexible and, hence. procedure and function names
are often more easily understood. Ada also allows the overloading of enumeration lit-
erals. Overloading is a new name for a concept that has existed to a degree in other
languages. However, overloads 1 other languages have been system defined, rather than
user-defined. 1/0 and numeric facilities have always had the same name or symbol,
regardless of the parameter type. An example is A+B. If the parameters A and B are
numeric then addition is performed. However if A and B are strings then concatenation

is performed.

Overloading is useful when a user has subprograms, either functions or procedures,

3The calling program may need to be recompiled (a disadvantage), but it will not need to be modified
(a greater advantage).

4Users here refer to the scope of the program unit importing the package. The programmer can, in
all likelihood. print out the source file for the package body. The point is that he may only write code
which depends on the package specification and which can reference entities named in the specification
but not entities declared in the body. This is a source of confusion for Ada novices because they will
find subprogram declarations both in the specification and the body. More subprograms are often
declared in the body than in the specification for reasons of modularity and readability: these “hidden”
subprograms encapsulate parts of the algorithm needed to implement the subprograms declared in the
specification.

*It should be noted that package names cannot be overloaded. Variables in two different packages
may, however, have the same name because they exist in different name spaces.
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that perform similar actions but on different types. For instance, it is common to have a
sort routine for several different types, such as integers and floating point. Overloading
instead of Sort Int and Sort _Float.
However there are limits to overloading. the compiler must be able to determine which

permits both of the routines to be called “Sort”,

subprogram to use.

Predefined operators in Ada can also be overloaded. This is good when the user
defines a new type and wants to use the commonly recognized operators, such as addition
and multiplication. This provides a very powerful facility for common numeric constructs
based on matrices and vectors. A function which overloads a predefined operator may
be called using either infix notation or the regular function call notation. Being able to
use overloaded operators with infix notation increases readability.

22.1.4 Structured Control

Ada provides statements to handle program flow control. real-time actions, and
exceptions. There are many statements in Ada that are similar to statements in other
languages. Many of them have stricter rules associated with them to increase program
logic control and increase compile-time detection of errors.

Consider. for example, the case statement. Every possible value of an object in a
case statement must be provided an option or a semantic error will be flagged during
compilation. The others clause can be used to cover any value that is not explicitly
provided an option.

The goto statement is allowed in Ada, although use of it is strongly discouraged.
Inappropriate use of a goto in Ada. will raise errors upon compilation.

Tasks permit a user to execute programs simultaneously. Tasks provide a user with
parallel threads of control. With multiprocessors they may provide actual concurrency,
and apparent concurrency with a single processor. The tasks can communicate with
each other, and wait for each other when necessary. Through task rendezvous. Ada
provides a mechanism for synchronization and data transmission.

Ada provides ways to resolve unexpected situations, which increases the reliability
of the system. In Ada these exceptional occurrences are referred to as ezceptions. Ex-
ceptions stop the sequential execution and pass the control to a different location in the
program. Exceptions can be used as a mechanism to support a fault-tolerant system.
Statements to rectify an unexpected situation are located a. the end of program blocks.
These statements are called ezception handlers. Exception handlers can solve the prob-
lem, pass the exception to a higher level (i.e., the calling routine) or do both. If an
exception remains unresolved, is propagated to the main program and is not resolved in
the main program, then execution of the program is terminated. Within exception han-
dlers, messages can be displayed, errors can be resolved, and files can be closed to permit

22-6
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clean exiting of the program. There are several predefined exceptions. For example, one
would be raised upon an attempt to perform an operation with a zero divisor. Users
can also define and raise their own exceptions. One of the advantages of user-defined
exceptions is to give the programmer control over the granularity of exceptions.

In a very loose fashion, the exception facility is analogous to a very structured
goto to the extent that when an exception is raised, control flow must be transferred
to the exception handler at the end of the current program block or to a higher level.
Moreover at the end of the handler, control must be transferred immediately outside the
block of the handler. In general. predefined exceptions should not be raised explicitly
by a programmer because there is no guarantee that the exception was caused by the
programmer-specified condition rather than some other unforeseen run-time violation.

In developing packages. the designer should think carefully about what error con-
ditions might occur (such as stack overflow, validation failure) and whether or not he
should name these conditions (i.e.. declare exceptions) to allow programs using this
package to trap for this exception and choose their most appropriate course of action.
A detailed discussion of exception usage is found in ADAS85 .

22.1.5 Reusability

Usually reusable components are self contained units, that are easily transferable to
other programs. Packages are good for grouping related subprograms. Often a package
will contain all of the subprograms for a user-defined type.

Another aspect of Ada that supports reusability is a generic unit. A generic unit
is a template of either a package or subprogram, from which a non-generic unit can be
obtained. They are best used for programs units which replicate a single algorithm for
several different types of data. An example for a generic package would be a sort routine.
The same basic program could be used for integers and reals. So to use the routine, a
copy of the generic unit is generated for the specific type to be used with the program.
Generics need not be found only at the utility routine level. The top-level design for a

subsystem could be written as a set of generic packages.

22.1.6 Environment specific features

Motivated by the needs of the embedded systems community, the Ada features
machine code insertions and pragma interface, provide ways to interface with other
high order languages. assembly language. machine-specific language, and the underlying
hardware. Interfacing with other software, such as databases. is discussed in Edition 3,

Section 20.

In Ada. the compiler determines where the code will be stored. how types and
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objects will be represented and stored, etc. Representation clauses and representation
pragmas permit the user to vary this. Representation clauses work with four types of
clauses: length clauses, enumeration clauses, record representation clauses, and address
clauses.

The length clause is used to specify the amount of memory the compiler should use
in representing objects of a type. The enumeration representation clause permits the
user to specify the internal codes for an enumeration type literal. The internal codes
specified do not have to be consecutive, though gaps can cause operations like finding the
succeeding value to be less efficient. The record representation clause allows the user to
specifv the bit-by-bit lavout of each component of a record to be specified. The address
clause permits the user to specify the storage address of an object, subprogram, package,
or task. It can also associate a hardware interrupt with a task entry. This clause is
useful in embedded applications where the memory location of called subprograms must
be known.

The interaction between the representation specifications and the use of other lan-
guage features can create some difficult cases for the compiler that can potentially result
in inefficient code. Good practice would be to isolate the representation specification
items in a package body. and provide an interface (i.e., the bit handling operations)
through the package specification.

22.2 Programming Style

Unlike COBOL and some other languages. Ada is free format. There are no line
numbers, and statements may start in any column. Therefore the programming style
for Ada is left up to the user. DoD-STD-2167A has an appendix for programming styvle
that contractors should default to. or use as the basis for defining their own.

The most important point to make about programming style for Ada is that the
programming style chosen should be consistent. Among other goals, the Ada language
was designed to be reusable and maintainable, both of which require that a person
unfamiliar with a program be able to pick it up and understand what is being done.

A project must establish coding standards and styles right from the beginning. It
is especially important to establish the standards early in the life cvcle if the design
is being done in Ada. Written standards allow Quality Assurance to have an explicit
domain to check.

Programming style is characterized by the format of the code and the naming
conventions used. Both aspects are discussed in the following subsections, as well as the
types of tools which support good programming style.

22-8
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22.2.1 Style Attributes

Programmers accustomed to other languages might have problems adjusting to
Ada’s free format aspect, i.e.. there is unlearning and relearning that needs to be done.
Considering that Ada is basically free format, some programmers may complain about
having to follow certain conventions, but it is important because style has a direct
relation to readability. Also with the increasing availability of syntax-directed editors
and other tools, there is no reason for not having properly and consistently stvled code.

There are some generally accepted programming conventions. These are:

e Provide a structured header comment,

Indent nested structures,

Differentiate reserved words from program variables with the use of upper and
lower case letters,

e Use whitespace (blank lines) to enhance readability,
e Use variable names that are self-explanatory, and

e Use comments to increase understandability only where necessary.

Figures 1 and 2 show an example program which follows the general conventions
listed above. augmented by the following:

s Reserved words appear in lower case letters,

e The first letter of each non-reserved word is capitalized, except for prepositions,
e 107 in 10 package names is capitalizec "1 general. abbreviations are capitalized.
e In a subprogram structure, the following words are aligned:

— with,

- procedure (or function).

begin,

-~ end,

o The subprogram name is repeated after the word “end™ and is included as a com-
ment after the word “begin”, and
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~=// AUTHOR: Jane Doe Pebruary 12, 1986

-//

-—// PURPOSE: Insert a name and corresponding telephone number in
-// the dirzectory.

-t/

-=// EXTERNAL PROGRAM REFERENCES:

-//

-=// ¥ind -— procedure which locates an entry in the directory.
-—~// Save_Ditrectory — procedure which stoces directory in a file.
-—=// Directory — global data structure of directory information
-—// cecords.

-=// Maximum _Size — saximsum number of records that can be stored

—~// in the digectory.
-—// Curreat_Size — curcent number of records contained in the
-// directory.

-// Same _Type —— type for cepresenting the name entry in directory
-// cecorcds.

~~// Telephone_Number Type -- type for crepresenting the telephone

-// aumber entry in the directory recocds.

-// Index_Type -— subtype for representing indices into the directory.
-//

-=// ENCLOSED UNITS:

-~//

-—// None.

separate(Dizectory_Manager)

procedure lasert (Mame :oin Name Type:
Telephone _Number : in Telephone_Nusber Type:
Duplicate_Present : in out Boolean:
Space_Available : in out Boolean) is

Entry Locacion : Index_Type:
begin — Insert

- check to see if room exists for additional entry
Space_Available := Current_Size < Maximum_Size:

Pind (Name, Entry_Location, Duplicate_Present):
if not Duplicate_Present then
if Space_Available then -- add entcy
Cucrent_Length := Current_Length + 1:
Directory(Current _Length) Name := Name:
Directory(Cucrent Length).Telephone_Number := Telephone_Number:
end if:
end if:;

Save_Directory:

end Insert:;

Figure 1: Example of coding style
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-—// ANOTHOR: Jane Dbe Pabruacy 12, 1906
-—//
-—// PORPOSR: Insect a name and correspoading telephone number in
-// the diczectory.
-—//
-=// EXTERNAL PROGRAN ARFPERENCES:
-—// I
-// pzocedure which locates an entry in the directory.
-=// SAVE_DIRECTORY
-—// proceducre which stores dicectocy in a file.
-—=// OIRECTORY
-/ global data structure of directory information records.
-// NAXINOM_SIIR
-—r// saxisus nusber of crecords that can be stored in the dicectory.
-—// CURREWP_SIZE
-~// cucrrent number of cecords contained in the dicectocy.
-// NAKE TYPE
-_// type for representing the name entry in directocy recocds.
-—// TELEPRONE NUMRER _TYPE
-// type for representing the telephone number entry in the
, —// directory recocds.
- -// [NDEX_TYPR
-/ subtype for representing indices into the directory.
-—//
—// ZHCLOSED UWITS:
-// None .

separacte( DIRECTORY MAMAGER )
procedure [NSERT

(RANR : in NANE_TYPR:

TELEPHONE _WUNBER : in TELEFHONE _NUMBER _TYPE:
DUPLICATE PRESENT : in out BSOOLEAN:
SPACE_AVAILABLE : in out BOOLEAN

) is

begin — INSERT

-= check to see if coom exists for additional encry
SPACE_AVAILABLE := CURRENT SIZE < MAXIMUM_SIZE:

FIND (NAME.
ENTRY_LOCATION.
DUPLICATE_PRESENT

):

if not OUPLICATE PRESENT
then

1€ SPACE _AVAILABLE
then — add entry

CURRENT LENCTH :* CURRENT_LENGTH - .
OIRECTORY ( CURRENT LENGTH) . NAME 12 MAME;
OIRECTORY (CURREWT LENGTH) . TELZPHONE NUMBER :* TELEPNOWE SUMBER:
end .£;
ond if:
SAVE_OIRECTORY:
end INSERT:

Figure 2: Example of alternate coding style
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o If all elements of a statement cannot fit well on one line, they are continued on the
next line and are aligned so that they are easily readable (frequently parameters
in a subprogram declaration will each be listed on a separate line, with the colons
aligned).

Other programmers follow a variation of these guidelines, depending on personal

and project preference. Some of the frequent differences are in:

e Capitalization of all user defined identifiers,
e Varying the degree of indentation. and

o Varying the alignment of control structures.

22.2.2 Naming Conventions

The Ada language does not set a specified length for identifiers, though most im-
plementations limit them to the source program’s line length. For identifiers that are
made up of more than one word. an underscore is frequently used between the words.

Since the length of identifiers is only limited by a program’s line length, abbreviating
words is strongly discouraged. except for abbreviations that are universally understood or
used project wide. There are two frequently used methods for abbreviating words. The
methods are dropping the vowels from the word, and truncating the word. Whichever
method is used it should be fairly consistent for the project. A detailed discussion of
naming conventions may be found in 'ADDA8S .

It is usually easier to decipher code if it reads like English. Effective use of naming
conventions can make comments unnecessary. Some naming conventions that aid in this

are:

e Objects are usually named with nouns. Boolean objects are named as if they ask

a question,
e Procedures are named with verbs to denote that an action is occurring, and

e Functions are named with a noun or a conditional clause if a Boolean result is

returned.

Organizations have and should set up guidelines for raming conventions. For in-
stance, in addition to standard program layouts, one such guide prescribes [FOF87 :

e Individual suffixes to identifv data type names, package names and object names,
and

e The use of full names when referring to entities inside of package specifications.
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22.2.3 Tools

There are many tools available through vendors to aid users and increase program-
mer productivity. Two tyvpes of tools designed to aid users in writing well stvled code
are syntax-directed editors and pretty printers.

Syntax-directed editors aid programmers by automating some of the program code
entry. This can be accomplished through the use of code templates and/or keyboard
macros. Syntax-directed editors usually fill in the semi-colons and various parts of Ada
constructs. The editors embody the syntax rules for Ada. The user can spend more
cnergy writing the code and less on the proper syntax. Some of these tools also provide
a way to pre-process the code into a structured format and to check for errors.

Several programming environments provide graphical ways to design the system
and have tools that automatically generate program code. {See Edition 2, Section 8.4
for a discussion of some specific methods and tools.) Some systems generate frames
(i.e.. the general layout of the programs). while other syvstems produce compilable code.
Often the user will then use an editor. such as a syntax-directed editor, to complete
what has been generated from the graphical design by filling in tvpe declarations and
other details. Some of these tools also tie directly into document generators, so that
there is a way to maintain consistency between specifications and code.

Pretty Printers format source code so that it is more readable. They ensure the
uniformity of code stvie and format. Some pretty printers will accept user-defined format

specifications.

Tools are being developed rapidly and 1t would be difficult to provide a complete
list of all vendor offerings. Vendors exhibit frequently at the major Ada conferences,
such as: SIGAda. AdaJUG. and Ada Expo.
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Section 23
Policy Updates

The signing of Department of Defense (DoD) Directives 3405.1 and 3405.2 man-
dating the use of Ada marks a policy milestone. All the services must now write an
implementation plan consistent with these directives, modifving or creating regulations
as needed in order to be compliant with the Ada mandate. The Air Force regulations
addressing computer resources are undergoing revision to be compliant with these di-

rectives.

The Ada Joint Program Office (AJPO) remains the focal point for Ada technology.
The AJPO is responsible for the validation procedures, as discussed in Edition 1, Section
3.1. Validated compilers will now have a special certification stamp.

23.1 DoD Directive Status

Two directives requiring the use of Ada in all DoD software were signed by Deputy
Secretary of Defense William H. Taft, IV. Directive 3405.1. dated 2 April 1987, discusses
computer programming language policy for the development and support of all DoD
software. Directive 3405.2. dated 30 March. 1987. addresses the use of Ada on all
mission critical software.

23.1.1 Directive 3405.1

Directive 3405.1 states the DoD policy that Ada is required both for mission critical
and for all other applications. The stated goal is to have Ada become the single, common
computer language for all defense software. Major software upgrades must also be done
in Ada. Programs already in full-scale development may continue to use a language
other than Ada through deployment and maintenance. When another approved higher
order language is more cost-effective over the application’s life cycle, this language may
also be used in lieu of Ada.

Approved higher order languages are:

Ada ANSI/MIL-STD-1815A-1983 (FIPS 119)
C/ATLAS [EEE STD 716-1985
COBOL ANSI X3.23-1985 (FIPS 21.2)
CMS-2M NAVSEA 0967LP-598-2210-1982
CMS-2Y NAVSEA Manual M-5049, M-5045. M-5044-1981
FORTRAN ANSI X3.9-1978 (FIPS 69-1)
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JOVIAL (J73) MIL-STD-1589C (USAF)

Minimal BASIC ANSI X3.60-1978 (FIPS 68-1)

Pascal ANSI/IEEE 770X3.97-1983 (FIPS 109)
SPL/1 SPL/1 Language Reference Manual,

Intermetrics Report No. 172-1

National Bureau of Standards (NBS) Special Publication 500-117 provides further guid-
ance in the selection of an appropriate high order language. Directive 3405.1 supersedes
DoD Instruction 5000.31 (“Interim List of Approved Higher Order Programming Lan-
guages (HOL)™).

Directive 3405.1 states an order of preference for software: 1) Commercial-Ofl-The-
Shelf (COTS) packages and advanced software technology; 2) Ada-based software and
tocls: and 3, approved standard HOLs. The decision of which type of software to be
used should be based on an analysis of the life cycle costs and the impact on competition.

Responsibilities for the implementation of the policy outlined in 3405.1 are allocated
both to the Assistant Secretary of Defense (Comptroller) (ASD(C)) and to the Under
Secretary of Defense (Acquisition) (USD{A)). Both the ASD(C) and USD(A) are re-
sponsible for the insertion of modern software technology in automated data processing
and mission critical systems respectively. The ASD(C) should define researcii areas for
information system needs and provide these topics to the USD(A), who is charged with
establishing software technology research programs. The USD(A) is also tasked with
managing the Ada program and the maintenance of the Ada language. Furthermore,
the head of each DoD component is charged with developing an implementation plan to
address the issues in the directive, designating a language-control agent. implementing
a waiver process to resolve requests for non-approved HOLs and establishing evaluation.
training, and education programs for advanced software technologies.

23.1.2 Directive 3405.2

Directive 3405.2 mandates the use of both the Ada language and an Ada-based
program design language (PDL). preferably a compilable one. on all software “integral to
weapon systems.” In other words, all mission critical computer software must be written
in Ada and compiled by a validated Ada compiler. Ada is the preferred language for
hardware test languages for Unit Under Test equipment. It is also the preferred language
for unmodified COTS software used by the DoD. The use of DoDD-STD-2167 and DoD
Handbook-281 is strongly recommended; the software engineering principles described
therein are to be applied to the production of defense software.

As with Directive 3405.1, Ada is not required for programs which are already in
full-scale development, unless the software is undergoing a major upgrade. Directive
3405.2 defines a major upgrade as the redesign or addition of more than one-third the
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software.

The USD(A) 1s tasked with coordinating the implementation of this directive. The
heads of DoD) components must develop a comprehensive Ada implementation plan that
addresses their organization’s transition plan to adopt Ada. for example. training plans,
regulations. etc. Furthermore. cach Do) component must have both an Ada executive
official (focal point) to monitor Ada programs and an Ada waiver contro! officer.

Directive 3105.2 designates the AJPO as the controlling agent of the MIL STD Ada
{See Edition 3. Section 15). The Air Force 1¢ responsible for providing the Ada validation
facility.

23.1.3 Impact of these Directives

There are several significant points to be made about the two directives. Most
significant is the scope of the \da mandate: it encompasses all DoD software, not
just mission critical software. The earlier Delaver memorandum had addressed just
software integral to weapons systems. The twoe directives reinforce the idea that Adais a
general purpose language and that all DoD programs_including management information
systeme (MIS). for example. will benefit from the vse of advanced software technology.
I'he effect will be to gain much greater computer standardization than if weapon and
support svstems alone were required to use Ada. The fact that the directive specifies
Ada for all other applications reflects the feeling on DoD’s part that the technology to

support Ada both exists and is maturing.

The existence of these two directives gives industry a clear signal that the DoD is
committed to Ada. For some time. industry had felt such a direction was lacking and
did not have the incentive to invest heavily in Ada software engineering tools. training,
or research. Several recent studies AFC87 and DSB&T had noted the lack of a directive
and strongly urged the DoD to unite behind a strong policy statement. The signing of
Directives 3105.1 and 3405.2 shows that Dol is serious and that the transition to Ada

will become effective.

Waiver granting authority is delegated to cach Do) component. Fither the USD(A)
or the ASD(C). however. may request to review waivers. as appropriate. Thus any
component granting too many waivers will certainly attract attention at high levels
within the Dol). Moreover, waivers cannot be granted for entire programs; waivers can

only be requested and issued at the svstem or subsvstem level.

The fact that a DoD) wide directive has been signed will enable Dol) components
to issue enforceable regulations. Unlike the 1933 policy letter and the Draft 5000.31
regulation, Directives 3405.1 and 3405.2 are oficial and their guidance must be followed.
Their status as Directives gives them more prominence and is evidence that the DoD
is committed to language standardization. The fact that both directives are effective
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immediatelv reemphasizes this point.

23.2 Air Force Policies

Current Air Force policy requires the use of Ada or JOVIAL on all major programs.
Only validated compilers may be used. This policy is set forth in Air Force Regulation
(AFR) 800-14, which must undergo revision in order to be compliant with Directives
3105.1 and 3405.2. At the time of this writing, the Air Force is still working on submitting
its implementation plan to the AJPO.

23.2.1 AFR 800-14

As noted above, AFR 800-14 does address Ada. It will require several changes in
order to be fully compliant with Directives 3405.1 and 3405.2. The essence of these
chianges follows:

e the Ada requirement is effective immediately for all programs. not just major
programs.

e an Ada-based PDL requircment must be added. and

» the waiver policy for both weapons systems and information systems must be
defined and agreed upon among Air Force components.

Air Force Logistics Command (AFLC) and Air Force Systems Command (AFSC)
jointly issued a supplement to AFR 800-14 in September 1987, to address the life cycle
management of computer resources in systems. This supplement mandates the use of
Ada on all new AFSC and AFLC programs, except for automatic test equipment test
programs. Moreover, major programs must use an Ada-based PDL. Software develop-
ment and support must comply with DoD-STD-2167.

The AFR 800-14 Supplement provides a framework for technology transition. Each
Product Diviston (within AFSC) and Center (within AFLC) must establish a Mission
Critical Computer Resource Focal Point (MCCRFP). The MCCRFPs are responsible for
the distribution of information (policy and technology related) and for the tracking and
initial processing of waivers. The AFR 800-14 supplement provides detailed information
on the content of waiver requests and the kinds of justification material required.

23.2.2 AFR 700-9

AFR 700-9, which is currently under revision, addresses computer programming
language policy. It is expected to set the standards for communication and computer
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systems, to outline the responsibilities of major commands. set the policy on program-
ming languages, list the currently approved languages, and address the use of 4th gener-
ation languages (4GL) and specialized languages. The revised AFR 700-9 will be based
on Directive 3405.1.

23.3 Policy Changes since Previous Editions

The AJPO has announced that it will not renew the federal registration of the Ada
trademark. In lieu of the trademark, the AJPO has adopted an Ada certification mar
to show that a compiler is validated under the Ada Compiler Validation Capability
(ACVC) suite. It was felt that the certification mark, which like the trademark has a
legal definition in the United States Code, was a more appropriate means to protect
the integrity of the Ada language. Vendors should use the certification mark, shown in
Figure 3. on literature and documentation associated with a validated compiler.

Figure 3: Ada certification mark

23-5




X7

-

Section 24
Benchmarks

In earlier editions of the Program Office Guide to Ada, benchmarking was discussed
with regard to perfurmance evaluation of Ada Compilers (Edition 1, Section 6) and to
the Ada Compiler Evaluation Capability (ACEC) (Edition 2, Section 13). In Section
6.3.2 of Edition 1. Execution Speed. it was indicated that comparing benchmarks for
Ada to those for other languages can be quite deceiving if not performed properly. In this
section. we will roview some of the existing benchmarks for Ada and some of the current
studies underway which will help managers select systems with the aid of benchmarks.

24.1 Purpose and Description

Benchmarks are used to perform experimentation and evaluation of various ap-
proaches in order to minimize risks to a project. In general the benchmarking process
‘BRAUNS&&" will include the following series of steps:

o Identifying critical areas.
e Analyzing alternative approaches,

e Creating and conducting experiments. and

o Applying the experimental results to the decision making process.

Benchmarks are being applied to compilers. There exist several synthetic benchmarks®

which are commonly used by compiler vendors to supply comparison data. Some of the

more common ones are discussed in Section 24.2.

At times. it is advantageous for an organization to modify existing benchmarks or
create application specific models in order to measure an Ada system’s performance in a
world that approximates the target environment. This might entail running applications
comparable to the finished product to determine if code size and execution speed are
sufficient. The Common Ada Missile Package (CAMP) Armonics (armament electronics)
Benchmarks, which will be discussed in Section 24.3.6, are an example of application
specific benchmarks.

%A s;r{t'};étic ben?h;;rk is a test written specifically for the purpose of collecting benchmark data.
Svnthetic benchmarks are distinguished from natural benchmarks, which are usually application code
adapted for the purposes of measurement.
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24.2 Major Existing Benchmarks

Benchmark tests are designed to measure the capabilities of a computer system. The
results are used to compare different computer systems and to determine the suitability
of a computer system for particular tasks. The basic output produced by a benchmark
consists of the time required to perform some task. A common technique is to write a
program that performs some representative activity between calls to a system timer.

Some benchmark tests are designed to measure the performance of individual fea-
tures while others combine several features in a single test. This second type, commonly
known as a composite benchmark, captures the interaction of features, but it should not
be construed as representative of real-time applications. In tuning a system. results of
the first kind of benchmark can be extremely useful. Refer to Edition 1. Section 6.3.2.
for more information on benchmark application techniques.

24.2.1 Performance Issues Working Group (PIWG)

The objective of Performance Issues Working Group” (PIWG) is to provide informa-
tion to the Ada community on performance issues related to Ada. PIWG has developed
and distributes a test suite consisting of performance related tests.

Anyone may submit a performance issue specification to PIWG in which one re-
quests performance measurements of special interest. The point of contact is:

Jon S. Squire

Westinghouse Electric Corporation
P.O. Box 746

M/S 1615

Baltimore. M) 21203
(301)765-3748
benchmark@ajpo.sei.cmu.edu

The PIWG suite resides in the directory ftp/public/piwg. on AJPO.SEI.CMU.EDU.

24.2.2 University of Michigan

The University of Michigan tests {CD)V86; evaluate the execution speed of specific
features of the Ada programming language. The focus is on the features from the Ada
language and run-time system that are believed to be important for real-time perfor-
mance. They address the issue of real-time performance measurement, with particular

7PIWG is an ACM SIGAda Working Group.
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regard to time measurement and scheduling. This approach isolates relatively small
items to allow comparisons of critical interest (e.g., rendezvous versus subroutine call).
These tests have revealed some interesting observations about the effect of compiler de-
signs: for example, certain methods used to do certain optimizations, dynamic storage
and exception handling affected the benchmark results.

24.2.3 Whetstone

The Whetstone benchmark 'C& W76 , one of the older benchmarks, measures the
performance of floating-point arithmetic. It was originally written in ALGOL 60 and
subsequently translated to FORTRAN. The benchmark computations are based on the
statistical distribution of statements from data collected in 1970. Programming lan-
guages have changed greatly since then. with the introduction of modern features such
as record and pointer tyvpes. so Whetstone does not cover all of the features of Ada.
However. the Whetstone benchmark is rich in floating point calculations. and as such
is useful for comparing svstems when the major concern consists of the performance of
scientific calculations.

24.2.4 Dhrystone

While the Whetstone benchmark is biased towards numerical computing, the Dhry-
stone benchmark concentrates on syvstems programming. The benchmark looks at the
tvpe of data and operations performed. The Dhrystone benchmark WEIR4 used recent
data on the actual use of programming languages®. As a consequence, the Dhrystone
benchmark mainly measures the speed of non-floating point code.

The Dhrystone benchmark was developed in Ada with three guidelines: 1) the code
should follow good programming practice; 2) the distribution of constructs should be
weighted in favor of systems programming software; and 3) the benchmark should be
designed so versions in other languages would be possible with minimal modifications.
This last goal was, in fact, difficult to achieve because of the disparity of constructs in
the spectrum of programming languages (e.g., FORTRAN has neither access nor task
types).

"Prograrr»r;ming le—mguagcs u;ed i‘nclude FORTRAN, XPL, PL/1. SAL, ALGOL 68, Pascal, and Ada.
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24.3 Additional Work
24.3.1 Production Quality Ada Compiler Report

The Production Quality Ada Compiler Report 'HHMS86 . produced by The Aero-
space Corporation for the Space Division of the Air Force Systems Command. is intended
to provide guidelines for evaluating and sc’ecting Ada compiters. The report defines dif-
ferent levels of quality comnpilers. Tt specihies the minimum requirements for a compiler,
and then continues to describe the gualities of & more 1deal compiler.

The evaluation of an Ada compiler 1o be production quality is based on satisfying
the following requirenients:

o Perforiiance.
Compiler capacity
o Compiler capacny,
e Lserinterface.
. o -
e Exiernal ioals interiace

o Adalanguag: .

Quaality assurany e and refiabilie o

Decumentation

['te above requirements apply to s compiete compiler system (i.e., the compiler, the
Ada library manager. linker ‘loader. and Ada run time svetem o Guidelines are given to
evaluate the production quality of a compiler =ysteni. The guidelines specify particular

capabilities and characteristics of production quaiity conpiler system.

Requests for copies of the report chonld be made to:

Nerospace Library

Reports Circulation

(M1 199)

P.O. Box 92957

Los Angeles. C A 90009

Report No. TOR-DUSG(6902 03)-1 or NTIS AD-AIR2

The report includes self test software to enable readers of the report to evaluate the
production quality characterictics of their own compilers.
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An eflort is underway to apply the guidelines developed in this report to commer-
cially available compilers. Two VAX® hosted compilers, from DEC!? and Telesoft, were
selected. The compilers are being installed, and the suite of tests described in the report
is being run. A report on the DEC results can be obtained from the point of contact
listed below. The Telesoft results, as well as a revised version of the Production Quality
Ada Compiler Report definition, should be available later in 1988. The point of contact
is:

Lt Kurt Maschoff
Space Division
SD/ALR

P.O. Box 92960

Los Angeles, CA 90009
(213) 643-1279

(AV) 833-1279

24.3.2 SEI Benchmarks for Embedded Real-Time Systems

The Ada Embedded Systems Testbed (AEST) project at the Software Engincering
Institute (SEI) is studving benchmarks to obtain data on the readiness of the Ada lan-
guage and Ada tools for use in real-time systems. The focus of the project is on run-time
performance. not compiler statistics. Both the PIWG and University of Michigan bench-
marks are being run on VAX hosted. Motorola 68020 targeted compilers. Additional
target systems under consideration include the MIL-STD-1750A processor and the U.S.
Navy standard processors.

A surveyv of benchmarks has been conducted. DONE&7.. Initial work in running
the benchmarks has revealed inherent problems, documented in ALT87 and A& WS8T].
Wild swings in numbers have been reported because of differences between System.Tick!!
and clock resolution. Dual loop benchmarks do not necessarily remove the effect of clock
imprecision. Benchmark tests need to be run for a large number of iterations in order to
determine a stable result. Paging hardware, even on a bare machine, can affect timing
results.

An important conclusion of |ALT87] is that Ada benchmarks are not fully trans-
portable: in other words, the tester should expect to modify and adjust the tests for
a given system. Both efficiency and performance considerations should be enumerated,
for example, code generation, run-time support. tasking overhead, exception handling
overhead, subprogram overhead, etc. Moreover. the underlying assumptions about the

}’{'/{X is a trademark of the Digital Equipment Corporation.
1YDEC is a trademark of the Digital Equipment Corporation.
"I'The precision of the machine clock, i.e., the duration of one tick
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measurement goals and their accuracy must be examined and validated in order to obtain
meaningful benchmark results.

24.3.3 Real-time, Run-time Environment Studies

The purpose of the Real-time Run-time Environment Studies is to investigate the
performance impact of real-time environments through the execution of benchmarks for
all features of the language. The tests are implemented in Ada, JOVIAL and FORTRAN
in order to allow comparison between these languages. There are also tools to facili
tate comparison and analysis of test results. This effort is sponsored by the Computer
Resource Management Technology Program. (Program Element 64740F), ESD/AVS,
Hanscom Air Force Base. MA.

The Real-time Run-time Environment Studies is a system which contains test rou-
tines to execute language features and input/output. The focus of these studies is to
create benchmarks that are very specific to individual Ada language features, in other
words, to address the question. “How good is Ada relative to other languages with re-
spect to size, speed. etc.” on a feature-by-feature basis. The test suite includes some
well known composite benchmarks such as Dhrystone and Whetstone.

The products of this effort are a test set and an accompanying user’s manual. The
test set is known as the Ada Compiler Performance Suite (ACPS). The initial version
is planned for the VAX. with versions for the IBM and 1750 processor planned. The
current test suite and preliminary user’s manual are available from:

Rich Kayfes
Aerospace Corporation
(M1/165)

P.O. Box 92957

Los Angeles, CA 90009
(213) 336-6092

24.3.4 Ada Run-Time Environment Working Group (ARTEWG)

The Implementation Dependencies Subgroup of the Ada Run-time Environments
Working Group!? has collected information on run-time compiler dependencies. The
information is being assembled into a catalog that will list the run-time implementation
dependencies as they relate to the Ada Language Reference Manual. The catalog will
give users the needed information on how the various Ada features are implemented by
different compilers. It will provide insight on how applications will behave at run-time.

12ARTEWG is an ACM SIGAda Working Group.
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See Section 28.4 for further information.

24.3.5 Commercial Ada Users Working Group (CAUWG)

The intent of the Commercial Ada Users Working Group?® (CAUWG)is to serve as a
liaison between potential cammercial Ada users. and the defense community and AJPO.
CAUWG will be a focal point for the exchange of information on the Ada transitional
experience. The group is investigating the barriers to the commercial use of Ada and
identifving wayvs of resolving the technological gaps uncovered. Specifically, CAUWG is

looking into Ada interface issues for:
e fourth generation langnages {1GLs).
e COBOIL.

RPC2 svstems.

e AUTOCODE,
o [SAM/VSANM files. and
e text processing.

CAUWG is also investigating the kind of support needed for the use of Ada in distributed
processing applications.

CAUWG will document the results of its activities through guidelines on Ada prod-
ucts and tools, tailored for the needs of commercial users. The point of contact is:

Nave Dikel

Addamax Corporation

7799 Leeshurg Pike. Suite 900,
Tysons Corner. VA 22043
(T03)R47-6755

24.3.6 Armonics Benchmarks

Armonics, short for armament electronics, software is one of the part categories
developed under the Common Ada Missile Program (CAMP). The software has been
modified to be suitable as benchmark tests for evaluating Ada system performance in this
specific domain. Unlike other benchmark efforts which tend to be more language-feature
or capacity oriented, these tests are application specific.

I3CAUWG is an ACM S1G Ada Working Group.
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There are two series of tests: one for missile operational parts and the other for
support routines. An example of support routines are the mathematical tests (e.g.,
trigonometric functions) which allow the user to compare characteristics such as time
and accuracy across different Ada implementations. The tests are designed to measure
compiler correctness as well as object code size and speed.

These armonics benchmarks are available through the Data and Analysis Center
for Software (DACS) library located at Rome Air Development Center (RADC). The
DACS library functions as a distribution center; no on-line help is available. To obtain
the armonics benchmarks, requests should be sent to:

DACS

RADC/COED

Grifhss AFB, NY 13441-5700

Attn: Document Data Set Ordering
{(315) 336-0937

The benchmarks are on magnetic tape medium and are available at a nominal
cost. Requestors must also sign a terms and conditions statement from RADC. Several
CAMP components are distributed through the DACS library: requests should specify
the component clearly (i.e., CAMP parts!¥, armonics benchmarks. or expert system!®).

19The CAMP parts are the reusable missile software parts. See Edition 2 Section 11.2.
15The CAMP expert system was built to aid in selecting the appropriate missile parts and constructing
the resultant program.
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Section 25
Simulation and Emulation of Systems in Ada

Ada was not designed as a simulation language. However, the language does provide
programming constructs that enable a user to build a simulation system similar to what
would be possible with a simulation language.

Although, simulation languages are very diverse, they will all provide a user with
simulation control. random stimuli generation, and statistics collection. Some also pro-
vide scheduling and garbage collection. Two of Ada’s features that are very useful for
implementing simulation systems are tasks and packages. Tasks provide a way to do con-
current processing. and the task rendezvous allows for synchrorizing concurrent entities.
Packages promote modularity in addition to data and process encapsulation.

There are many diverse tvpes of computer simulation used today. They are gener-
ally grouped into four classes. Monte Carlo, continuous. discrete-event, and combined
discrete-continuous, each with a special type of system that it is used to model. Ada can
be used for any of these types of simulation, but some specific applications may require
specialized run-time system support. A discussion of the use of Ada for discrete-event
simulation can be found in SHO87', 'A&S87 and BRUB84!. The general conclusion has
been that although Ada has some weak spots (in inheritance and garbage collection of
allocated task bodies). it is quite well suited for this type of programming.

25.1 Simulation vs. Prototypes

Simulation and prototyping are related concepts. Their difference is mostly one of
purpose. Prototypes are generally of a subset of an implementation. They are designed
to show the functional capabilities of a portion of the system. On the other hand,
simulations usually mimic various aspects of a system's behavior.

At times a simulation will be used with a prototype. The simulation would mimic
the environment in which the prototyvpe executes its functions. The relationship between
prototypes and simulations is analogous to the one between a module and its test driver.

To decrease the level of risk on projects. the use of prototyping and incremental
releases is being advocated. Critical portions of systems are prototyped or simulated
early in the life cycle to determine the feasibility of the system. System design reviews
often include demonstrations. either in the form of a prototype or a simulation.
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25.2 On-going Simulation Work

There are an increasing number of investigations using Ada in simulations. In
general Ada is being chosen for several reasons:

o High Order Languages are easier for programmers to use,
o Ada packages enhance modularity and maintainability,

e Ada provides multi-tasking,

e Ada supports dynamic allocation of memory,

e Ada has an interface to low level 1/0,

o Strong type checking prevents data in low level modules from being accessed by
accident,

e Record types provide a means of storing arbitrary types of data. and

e Ada supports linked list manipulation, needed for data collection and event calen-
dar management.

Several efforts are using Ada for simulations in the syvstems area as well as the
applications area. In M&GR&7 , a general purpose discrete-event simulation package is
described. A queueing network simulation package is discussed in HAS88., a motor
plant simulation in 'KIM88', and a spacecraft dvnamics simulator in BGA88'.

To support ESD’s investigation of alternative Battle Management Command, Con-
trol, and Communications (BM/C3?) architectures, the MITRE Software Center is in-
volved in simulating real-time, space-based battle management functions. Their simu-
lating software displays three-dimensional state vectors on a workstation. They plan to
support other Strategic Defense Initiative (SDI) simulations by designing the framework.
The point of contact for further information is:

SDI Simulation

The MITRE Corporation
Burlington Rd

Bedford, MA 01730
(617) 271-1501

Two aircraft training simulators were redesigned and reprogrammed in Ada. The
objective was to apply a modern software engineering approach, partitioning the system
based on data flow and object abstraction techniques. Tasking was used sparingly in
these simulations for efficiency reasons. Further information is available through:
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ASD/YWB
Wright Patterson AFB, OH 45433
(513) 255-7177

25-3




Section 26
Lessons Learned on Ada Projects

The Ada language has been used on projects throughout the military - on pilot
projects. applications under development. and deploved svstems. In some cases, the use
of Ada has been by choice: in others, it has been required. A baseline of experience is
emerging. and the consensus is that Ada systems are. in fact. feasible. Ada development
is by no means problem free. largely due to immature tools and to the need for new
software engineering approaches and attitudes. There are clear benefits, however, from
the use of Ada. The distribution of time in the life cycle is altered. with a greater
proportion of time being spent ecarlier. in the design phase. with the result that the
generated code is more correct.

In theory. using Ada is supposed to bring all sorts of benefits. in particular, lower
cost and improved guality of source code. Practically speaking, however, managers who
have not vet undergone the transition to Ada are asking. ts all the propaganda really
true? In reading about Ada one often just hears the two extremes: the system can be
done in Ada or the system cannot be done in Ada because Ada is too big. too slow.
etc. Results from the field are available. and this section will try to present the lessons
taught by this early experience with Ada.

This section presents a summary of the Government’s and 1ts contractors’ experience
with Ada projects. The project database represents both large and small projects in
terms of monev and size. Different aspects of Ada experience are discussed in order to

give a better perspective on what to expect in the transition to Ada.

26.1 Metrics

The ever increasing cost of and demand for software is focusing more attention than
ever on software productivity and quality. Several metrics are used ranging from the
the pregram size in lines of code per unit of time, to the frequency of software failure.
Regardless of the aspect being measured, productivity is usually defined as a ratio of the
outputs produced by a process to the inputs it consumes {BOES&7 . According to Boehm.
the greatest problem exists in defining the outputs. Partly because of the deficiencies
in the traditional metric of delivered source lines, alternative units of measure based on
program complexity have been advanced. Current efforts arc aimed at establishing a set
of baseline metrics to help project personnel monitor the quality and status of software
projects [KENS7 .

Productivity data on Ada projects is becoming available. Because of the newness
of Ada technology and some unwillingness on the part of projects to release data. these
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numbers should not be viewed in absolute terms. They are. however, indicative of some
important trends that show that using Ada will have an unmistakable impact on software
development and cost.

26.1.1 Distribution of Effort in Different Phases

Numerous data collection efforts reveal that Ada projects are front-loaded. Both
first time and repeat Ada users have found that much more time is spent in the design
phases. and much less time in the code and integration phases. The traditional distribu-
tion of software development effort across the design, code and test/integration phases is
40-20-40, whereas Ada tends to be more 50-15-35 [REI&7,. Several projects have found
that integration took less eflort than originally planned.

There are several reasons explaining why Ada projects tend to be front-loaded.
This distribution reflects greater attention being paid to software er -..ering, which
encourages greater effort and thought in the early phases. The Ada language contains
powerful program structure features which are available to the designer when Ada is
also used as a PDL. Ada must be learned earlier in the life cvcle than other languages.
because it is also used as a PDL.

The distribution of effort in the software life cycle should also be examined from the
point of view of the software standards. Users have noted that the software development
standards. inciuding DoD-STD-2167, are not wholly compatible with Ada software de-
velopment. Complaints focus on the fact that they do not allow for evolutionary software
development. The use of Ada as a design language increases the problem because it is
difficult to differentiate between the expression of the design and actual code. Most stan-
dards require that the PDI be frozen before any code staris. The use of Ada compounds
the problem because in Ada, the PDL is continually refined into code. In the course of
this refinement, changes will probably need to be made to either the requirements or
design, and when the design is expressed in an Ada PDL. it appears to be duplication
of effort to update one set of files representing the design, and an almost identical set of
files representing the design as partly expanded into code.

26.1.2 Productivity

A traditional measure of productivity is in delivered source lines. In earlier lan-
guages, for instance FORTRAN, a line held a whole statement (or most of it). In Ada.
free formatting is encouraged for readability, and a line taken literally may well be blank
or contain only a small part of a statement. Strictly speaking. there will probably be
many more lines (in the sense of FORTRAN card images) of code in an Ada program
than in a program in some other language. The separable characteristics of Ada speci-
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fications and code provide an additional quantity of semicolons to reflect specifications
and context clauses. These increase the semicolon count in Ada necessary to reflect an
equivalent structure in some other language. In some cases this could be a 26% overhead
in Ada and quickly offset a perceived productivity increase. Furthermore, additional Ada
language constructs are used to define context and interfaces and these add to the semi-
colon count and should be considered when comparing an Ada effort against another
language such as FORTRAN. Consequently. a revised measure is emerging. based on
counting semicolons. Various considerations apply in counting semicolons, as noted in

REIST .

Several attempts have been made to calculate Ada productivity in terms of semi-
colons per person-mouth. The average for these estimates is in the range of 277 to 310
H&S&Y and REI&T semicolons per person-month, higher than the industry average of
200 lines of code per percon-month. Another study reports a 23% increase in produc-
uvity over the life of an Ada project FOF&7 | consistent with the increase reported in
the Harbaugh and Reifer studies!®. Reifer acknowledges that there is a fairly wide range
of productivity nvmbers collected in his research. reflecting the stecp learning curve for
Ada. The important lesson here is the trend to higher productivity.

The higher productivity figures must be interpreted in light of the steep learning
curve for Ada. Numerous sources have found that the productivity gains will not be
found in the first two or three Ada projects and. in fact. the first couple of projects may
show a productivity decrease. Ada requires a heavy up-front investiment in training.
tools. and experience base. The theme of the December 1987 SIGAda conference was
Ada usage. and many of the articles in the Proceedings. as well as studies published by
the Armed Forces Communications and Electronics Association (AFCEA) and Defense
Science Board AFC87 and DSB8&7'| point out that this investment is part of the cost of
the transition to Ada: an investment that must be made in order to realize the benefits
promised by the use of the Ada language.

26.2 Language Objectives

The purpose of using Ada is not just for the language but also to accrue Ada’s long
range benefits to the entire software engineering effort. In looking at Ada experiences.
we have to consider not only the programmers’ experience with individual language
features. but also issues like design, reusability. portability. language use, testing, and

maintainability.

'8Harbaugh’s data covers one project, the Graphic Kernel Svstem (GKS) Ada implementation, while
Reifer’s database includes 41 projects.

26-3




- o

26.2.1 Design

Lessons learned in the design phase fall into two major categories: the use of a
design method derived from object-oriented principles and the use of Ada as a design
language. In general, an object-oriented approach refers to a data-driven design philoso-
phy. Software is viewed in terms of objects and operations on these objects, rather than
along strictly functional lines.

The danger with some of the object-oriented approaches is their tendency to over-
simplify the design process. Criticisms of various methods include IN&S87::

Lack of guidance on designing concurrent processes.
e Too deeply nested hierarchical structure,

o Limited domain of applicability to small. well-defined and well-known problems.
and

e Awkward and Impractical strategy. reflecting more art than engineering discipline.

Object-uriented design has become popular in the industry and its precise meaning
differs among different people. In choosing this approach, or any other methodology.
caution should be exercised to make sure that the design technique provides not only a
disciplined decomposition of the internal functions but also guidance on “the packaging

7\ »”

of software modules into Ada tasks. packages. and subprograms 'N&S87..

Ada has been found to be a good language to use for expressing design. Some
projects have. in fact, used Ada as a design language and another language as an imple-
mentation language.’” The primary reason lies in the program structure facilities that
exist in the language, in particular the package feature. There is disagreement within
the Ada community as to whether full Ada or restricted Ada should be used when
recording a design. The restrictions are aimed at preventing the designer from coding
prematurely, for example by disallowing statements within the PDL. Many Ada pro-
gram design languages (PDLs) define classes of structured comments in order to allow
the designer to express other information which is not directly expressible in Ada, such
as timing constraints and input assumptions. (Edition 1, Section 5 discusses PDLs.)

In spite of this drawback to using Ada as a PDL, namely the risk of premature
coding, there are major benefits which have been realized. Assuming that the PDL can
be machine processed (often by an Ada compiler), syntactic and semantic errors are
caught much earlier in the software life cycle, in particular interface errors, such as one
module calling another one with the wrong name or the wrong types of parameters.
Because the PDL and the coding language are the same. creating the PDL effectively

'""Directive 3405.2 states that an Ada-based program design language will be used for software design.
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creates the code skeleton. Furthermore, because the code is completed through successive
iterations of refining and expanding the PDL, the software development process is more
evolutionary in nature. allowing for improved error detection and correction.

The point to be made here is that a compilable PDL should be used. One project
has said that they suffered because their PDI. was not compilable and, therefore, certain
clean interface errors were not caught. Many published articles encourage the use of a
machine processable PDL, 1.e., an augmented compiler which can machine process the
annotations. Such an enhanced compiler would not need necessarily to generate code

from the PDL.

There is no agreement in the community as to whether Ada should be used during all
stages in the life cycle. Some analysts feel that Ada was not designed to express system
structure or system constraints. They feel that graphics or some other annotations
are needed to capture temporal information and other constraints. A very persuasive
argument against the use of Ada too early in the life cycle, such as during requirements
definition. has been advanced: Ada is part of the solution, and requirements definition
involves determining what the problem is. It is not a good idea to explain a problem by
describing its solution. Also. the solution process must be defined before the solution
technology can be selected. Ada is a tool, not a process, and it is the process which
implies the tools. not the other way around.

Neither Ada PDL nor object oriented methods have been found to be sufficient on
their own. Used together thev can be a powerful combination. in particular when the
object-oriented method communicates the design through a graphical notation. The use
of integrated tools supporting both the graphics and PDL is extremely important.

26.2.2 Reusability

One of the promised and highly promoted benefits of using Ada is reusable code.
Ada experience to date shows that reusability does not happen by accident. The design of
the software must have reuse in mind. and management must plan for reusable modules
as a product. Reusability is not free; in fact. one study shows it to be a major factor
influencing cost and size estimation REIRT .

In discussing reusability. one should identifv the level of reuse: reuse of utilities
versus subsystems. and reuse within one organization or within the superstructure of
the organization. Reuse has become a catch phrase, and sometimes it may only refer
to utility hibraries. Whenever a programmer writes a generic and instantiates it, he is

“reusing” code.

Reuse costs time and money. It must be designed into the system and it affects

design decisions. Edition 2, Section 11.2 addresses issues of motivation, design, and
incentives. In designing reusable components. it is imperative to do a thorough functional
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domain analysis. This analysis should be done as a cooperative effort between domain
expert(s) and software engineers. Management must plan for both good communication
and an effective retrieval system. If other projects do not know about the reusable
components and cannot access them easily, reuse will not occur.

A key element in planning for reusability is the creation of an effective library and
configuration management system. The Ada program model consists of a single library.
Different Ada projects, each with their own library, cannot share modules easily unless
the source code is duplicated for each project. Should these reusable units be changed,
the changes must be both propagated to each reuser and recompiled within each project
library. Tools are needed to facilitate the concept of multiple libraries DAUSTI.

Several reusable libraries exist, in the commercial and public domains. (See Edition
2 Section 14.) In addition, there are two major government funded efforts to create
reusable components, the Common Ada Missile Package (CAMP) for missile compo-
nents (Air Force Armament Lab) and the Reusable Ada Packages for Information System
Development (RAPID) for a library /retrieval system (Army Informadon Systems Engi-
neering Command). The Software Technology for Adaptable Reliable Systems (STARS)
program is expected to fund a reusable software repository. It is significant that there
is sufficient high-level interest to create the environments needed to support reusable
components. as manifested in these three government sponsored efforts.

26.2.3 Portability

There is limited experience in porting Ada code. Few applications have been ported
across different host machines. Ada tool vendors have the most experience in porting
Ada code insofar as they offer products whi~% rurn on different hosts. As with most
languages, machine-independent portions of code are easier to port. Edition 2 Section
11.3 discusses portability in depth.

An important consideration in porting Ada is the tool set on the target machine.
In some cases. the development and execution environment are different. The target
environment needs an adequate tool set for testing and debugging purposes. so that
productivity losses are not incurred. When the development and support environments
are different, there should be a strong relation between the two. ideally a cross compiler.
Without such a facility, all code needs to be recompiled after it is ported. In theory.
this should not be a problem but, in practice. the comrpilers may not be of the same
maturity and will not necessarily generaic code of equivalent quality for all Ada con-
structs. Moreover, there are risks that the compiler on the target machine cannot handle
optional Ada features related to representation specifications (Chapter 13 of the Ada
Language Rcference Manual) and that it has a different set of bugs requiring different
workarounds than on the development system.
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Configuration management is an issue in portability, especially in the situation
where source code is being developed on several machines. Experience indicates that a
great deal of automation is required to control source code and maintain stable baselines.

Benchmarks have been ported frequently and have required some editing to compile
and execute successfully. Compiling benchmarks for the first time may reveal errors in
the compiler or in the benchmark. The benchmark may assume pragmas that have not
been implemented on a given system. In running benchmarks on embedded computer
target systems, modifications may be needed in order to link to the target input/output
functions. A more detailed discussion of benchmark experiences is in Section 24 of this
Edition.

26.2.4 Language Use

Users’ experiences with Ada language features are very positive with respect to
Ada’s strong typing and program structuring constructs but negative with respect to
existing implementations of Ada run time syvstems and Ada’s tasking paradigm. Ada
has made certain application code more eflicient, for example, slices. The use of Ada
has led to much cleaner implementations of the designs, which are easier to understand
and work with at integration time.

The biggest problem. however. lies in immature tool sets and the lack of efficient
run-time support. Early releases of compilers did not support the machine-dependent
interface of the language. causing problems for many real-time applications. Early im-
plementations of generics resulted in too much code expansion. The tasking overhead,
especially that for rendezvous and the associated context switching, is too high for most
applications. A high level of CPU reserve is needed in order to run Ada software. Prob-
lems have been reported with the implementation of Ada's input/output features for
some applications. Many of these problems have been resolved in subsequent releases of

compilers.

Run-time systems need to be integrated with existing libraries and system services
such that the application can place appropriate calls to those modules. The language-
defined interface pragma needs to be supported. Run-time support libraries need ad-
ditional flexibility to accommodate custom hardware chips as well as built-in test, bit
manipulation, and fast interrupt capabilities.

The Ada Real-Time Environments Working Group (ARTEWG) has studied the
deficiencies and requirements for Ada run-time support extensively. Their recommen-
dations focus primarily on tasking. including standard application-specific scheduling
algorithms packages, language clarifications, and guidelines on the use and implemen-
tation of task priorities. In a white paper published in the December 1987 Ada Expo
Proceedings *ART87 . the ARTEWG discusses shortfalls in current Ada run-time tech-
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nology. The ARTEWG advocates systematically addressing these problems in order to
develop Ada run-time idioms that meet embedded system space and time constraints as
well as fault-tolerance, distributed computing, and multi level security requirements.

Although these inefficiencies are major, experience shows that they are not necessar-
ily a reason not to use Ada. Workarounds have been found in almost all instances. The
issue of excessive tasking overhead is being addressed by individual vendors, and the: are
various solutions being proposed. including possible language changes'®, implementation-
defined pragmas. and interfacing to assembly language where necessary. Successive
releases of tool sets have been showing substantial improvements in performance and
functions.

26.2.5 Testing

In several projects which gathered statistics on error rates, it was found that the use
of Ada reduced errors by 25% to 30%. Significantly more errors were found before the
integration phase. in several instances reducing the amount of time spent in this phase.
This reduction in errors was attributed to the extensive static checking performed by
the Ada compiler. By compiling their designs, users found that they could eliminate the
syntactic and semantic errors between module interfaces early in the software life cycle.
without the difficulties normally encountered during the integration phase.

Testing Ada programs has revealed interesting results. The use of certain Ada con-
structs such as exceptions, generics, tasking, and packages requires a different approach
to testing. More special-purpose drivers are needed in order to conduct unit tests. The
nondeterminism of task scheduling makes it more difficult to test concurrent programs
because the failures may not be repeatable. Testing effectiveness has increased due
to some Ada features. The information hiding supported through the proper use of
packages has reduced regression problems. Strong tvping and program unit specifica-
tions have automated detection of interface errors. The existence of exception handling
has encouraged programmers to think about potential exceptional situations, thereby
reducing errors.

Since the initial release. the validation suite has become more thorough in its cov-
erage of language features. A validated compiler, however. is by no means a guarantee
of a perfect, error-free compiler. The validation suite tests conformance to the stan.
dard; it provides no guarantee of performance or adequate -un-time support. Over time,
however, with successive releases of the validation suite, some of the harder-to-test fea-
tures are being covered. For example, with relea.e 1.9, there are tests on tasking, Ada

!8The International Real-Time Ada Issues Workshop identified several areas where language changes
would help make Ada more responsive to the real-time embedded community, such as fault-tolerant
non-distributed execution, program reconfiguration, and hardware interrupt priorities ‘'WORS7).
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Language Reference Manual Chapter 13 features, and fixed-point types. As discussed
in Edition 1. Section 3.1, however, the validation suite can never be complete and test
every nuance of Ada.

26.2.6 Maintainability

Little data is available yvet on the cost of maintaining systems written in Ada. Based
on the fact that integration is easier because the Ada constructs are more understand-
able, maintenance should also benefit from Ada-coded programs. Software managers
expect that because Ada allows for a better representation or expression of software
structure and function, maintenance should be easier.

The bigger issues in maintenance may well be the need for recompilation and for
configuration management. Depending on the interconnections between modules and
their location in the program dependency tree. large amounts of the program may need
to be recompiled. In other languages, such massive recompilation would be more char-
acteristic of a new release of a compiler than of a change to an existing module. At first
glance. this may seem to be a substantial drawback to the use of Ada. To the contrary.
this forced recompilation wili catch many other errors which might otherwise creep into
the system. namely the notorious ripple effect errors. Sophisticated incremental recom-
pilation tools will also help in limiting recompilation by analyzing the impact of code
changes and only making those units obsolete which are affected by the change. Good
design of a svstem may avoid most, if not all, of these problems.

The need for configuration management throughout all phases of the life cvcle is
important. The Ada program library model enforces a current configuration because
the insertion of an updated module in the program library automatically invalidates
any dependent units in the library. Because of the nature of large systems. however,
more sophisticated configuration management has been found necessary in order to track
baselines, versions. and variants. Moreover, such a system must track not only code but
also all associated documentation (design. requirements. user manual, etc.). Data on
several projects reveals that configuration management played a much more important
role than anticipated.

26.3 Tools and Training

Recently, tools and training are receiving considerable attention. Ada conferences
regularly have exhibit halls, which attract at least as much attention as do the regular
sessions. Training was perceived as a possible cause of the slowness of the Ada transition,
and the AJPO and AFCEA organized a task force to investigate the problem. The
general conclusion was that training per se was not the reason projects had had problems,
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but that tools were a major contributor.

26.3.1 Impact and Adequacy of Tools

As stated in Section 26.2.4, tool immaturity caused many of the problems on Ada
projects. Production quality language tools are needed, such as symbolic debuggers and
tasking analyzers. Tools to automate other phases of the life cycle are also needed, such
as design tools to manage complexity and to help understand vertical and horizontal
relationships in the software. For example, a dependency analysis tool would be useful
in order to list both the units which depend on a given unit (in order to determine the
modules to be recompiled should this unit change) and the units on which a given unit
depend (i.e., the ones imported through with clauses, to facilitate debugging).

Ultimately, a fully integrated environment is needed. Users with more integrated
environments have experienced much higher productivity using Ada than those with
poorly integrated tocls. The development environment should provide sufficient target
support to allow testing and debugging.

Vendors have made great progress with Ada tools. Looking back over the history
of Ada, the first goal was to develop validated compilers, ignoring considerations such
as speed, object code quality, and run-time efficiency. Ada compiler development has
been pushing out the limits of compiler and run-time system technology. Having met
the first goal of validation, vendors are working on their next objective. performance
and optimization. Successive compiler releases have made tremendous gains in speed.
efficiency and correctness.

There are a great variety of host/target combinations today. showing that industry
believes that there is a market and that DoD is committed to Ada. In spite of the
problems that have existed with the early tools, the Ada pioneers in the user community
have shown that Ada is possible. Having surmounted many obstacles in the tools area
and given the variety of tool options today, they stress that the lack of a compiler for a
target machine is a poor excuse, One of the recommendations coming from these users
is to look for an acceptable tool set before starting the project. Developing tools at the
same time as the application is a frequent source of technical, cost and budget problems.
These users also stress that a pragmatic rather than a purist approach is needed. In
other words, a program manager should recognize that most of a program can be done in
Ada, and that it is acceptable to isolate critical portions to be done through an interface
to another language. Just because the all the code cannot be written in Ada. it should
not be taken to mean that none of it can be written in Ada.
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26.3.2 Ada and Software Engineering Training

In both government and industry, different levels of personnel in the development,
management and support functions require training in aspects of Ada and software en-
gineering. Technical training in language features and design methods is needed for the
software engineers. Managers need to learn about the impact of Ada on the life cycle
and its effect on planning, scheduling, and resource allocation. Furthermore, they must
recognize the need for training, both for management and non-management people. Sup-
port personnel, including acquisition, configuration management and quality assurance
personnel need some familiarity with the language, the software process and software
metrics.

Both government and contractor personnel agreed with the need for different kinds
of training in software topics for different categories of work. Training is needed not
only in writing software as an engineering discipline but also in a life cycle approach
to software management and control. The rotation of uniform personnel in project
management positions breeds a short term, a two to three vear view of a program,
rather than encouraging a long term, 20-vear. life cycle attitude.

Timeliness and hands-on experience were found to be key factors in successful Ada
training. Videotapes and computer-aided instruction were found to be much less effec-
tive teaching vehicles. Ada language training too far in advance of design and coding lost
much of its effectiveness. In order to gain a deep understanding of Ada concepts. labora-
tory exercises were invaluable. The access to the compiler enabled students to overcome
the hurdles of a new language’s syntax and semantics and to gain confidence in the use
of Ada structures. Practice in designing package specifications was characterized as an
integral part of a successful technical training curriculum.

Ada training involves retraining and teaching programming attitudes. Some con-
cepts are hard to learn for programmers with a FORTRAN or assembler background.
such as those related to strong typing. Recent graduates learned the Ada language faster
because of their academic experience with Pascal and other modern languages.

26.4 Management

The use of Ada is leading to changes in management expectations and planning.
The transition to Ada has given new prominence to softwar: issues such as reliability,
maintainability, reusability. methodology, integrated toolsets, etc. Cost estimation and
resource allocation for Ada projects are different than for non-Ada projects. The steep
learning curve for Ada means that planning for the initial project will differ from planning

for subsequent projects.
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26.4.1 Cost Estimation

Existing cost estimation models will need to be recalibrated. Elements such as
reusability, the degree of real-time processing, the learning curve, and the use of Ada
program structure features need to be integrated into the models. Moreover, as the
base of Ada projects grows, the weighting factors applied to the cost parameters can be
better computed. Current weighting factors are no longer valid because of the different
distribution of effort observed in Ada projects. During the transition period for Ada
technology, prior Ada experience is an important cost factor to incorporate because of
the steep learning curve characteristic of the first one or two projects.

26.4.2 Resources Needed

Management planning must account for personnel, software, and hardware re-
sources. The initial Ada investment is expensive, involving training, tool acquisition
and, in some cases, larger computers. With subsequent projects, the need for major
outlays to support Ada declines substantially. The lack of experienced Ada designers
and prograramers on initial projects adds time to the schedule. Managers have a choice
of training their own engineers or of hiring already trained personnel. In order to insert
Ada technology more effectively into their own organization, managers may want to hire
an “Ada guru” as a technical focal point. Where a successful transition to Ada has been
achieved, there has been a broad-based management commitment to the use of Ada.

Many prejects have identified a need for integrated tools to maximize the productiv-
itv gains made possible by Ada. In addition to production quality compilers, integrated
design, metrics and configuration management tools are needed. Such extensive automa-
tion adds to the cost of the first few Ada projects in an organization.

26.4.3 Receptiveness

Ada has been greeted both with enthusiasm and with resistance in government
and industry circles. Acceptance of Ada is gaining. with the realization that the DoD is
committed (evidenced by the two Directives 3405.1 and 3405.2) and with the availability
of more mature language tools. Some projects were successfullv done in Ada in spite
of management skepticism (either on contractor or government side). The commercial
world has shown interest in Ada, and several companies have made business decisions
to convert to Ada, convinced of Ada’s long term, life cycle benefits. The Ada language
is regularly referenced in software-related articles.

Resistance to Ada can be attributed to a combination of psychological and technical
factors. Because of its newness and the lack of widespread Ada experience, project
managers are afraid of failure. They do not want to take the risk on their system,
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preferring to let others prove the technology. The Ada technology was not mature when
the first Ada projects started, and the technical difficulties experienced were sizable.
The e are still technical challenges today that require innovative solutions. Ada was
initially marketed as the universal problem solver for the software engineering crisis.
Because this promise was not fulfilled immediately. some managers became skeptical
about Ada’s capabilities.

It is important to understand that the Ada language alone is not the entire solution;
it is one piece in a much larger integrated sclution which encompasses language, tools.
and methods.

26.4.4 Ada Experience Forums

Several case studies and workshops to assess Ada experience to date have been
conducted. Two companies were contracted to redesign and redevelop in Ada two aircraft
training simulators. Reports on their experiences were published. An “Ada Simulator
Validation Program Workshop™ was held and briefing slides are available through the
following address. Further information is available through:

ASD 'YWR
Wright Patterson AFB, OH 45133
{513) 255-7177

The Electronic Industries Association held a workshop in November 1987 which
addressed Ada experiences as well as industry questions on DoD-STD-2167 and DoD-
STD-2168. The Ada Information Clearinghouse i1s continuing to accumulate a database
of DoD programs currently using or planning to use Ada. They have developed a survey
form to collect data on:

e program name and sponsor,

e point of contact,

e brief functional description of software.
e host and target systems,

e tools (compilers, design tools. etc.)

e cstimated size,

e productivity,

e education and training,
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e life cycle costs, and

e lessons learned.

The Ada Information Clearinghouse may be reached at:

Ada Information Clearinghouse
3D139 (1211 Fern St., C-107)
The Pentagon

Washington D.C., 20301-3081
Attn: Ada Usage
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Section 27
Distributed Processing

A distributed system is a collection of processing nodes connected by some limited
bandwidth communication medium. Each node is composed of one or more processing
elements sharing a single memory space. Communication between nodes is usually done
by message passing.

Most current applications are composed of a few distinct programs that are dis-
tributed to different nodes. These programs communicate via a message passing pro-
toeol. There are new machines and new applications being developed for which this
approach is impractical due to size or the number of processing elements. This section

discusses both tvpes of projects and their relevant issues.

Historically. there has been another class of systems called “tightly coupled dis-
tributed svstems.” These systems are composed of several processors that communicate
by means of shared memory. Today these svstems are usually referred to as multipro-

cessors. Ada is generally considered to support this type of system very weli. and most

of these systems have an Ada capability.

27.1 Current Development Issues

The typical distributed application today runs on a few nodes and is developed as
one or more separate programs per node. Fach node in these svstems is either a single
processor. or a set of processors that share a commen memory address space. Adais well
suited for developiug software on one node. and the details of internode communication
can be easily hidden in one or two packages R&Z83 and DZMR7 .

There are several areas of interest for this tyvpe of distributed application in Ada:
e local area network interface.
e configuration management.
o distributed data management.
e migration of data,
e migration of code. and

o load balancing.
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The most popular communication system for distributed systems is the local area
network (LAN). These networks provide relatively high bandwidth communications be-
tween nodes. The communication software for most of these networks was not designed
for Ada, and some of the Ada interfaces are difficult to work with. There are no inherent
problems in creating a good interface, but a program manager should plan for solving «
few problems when interfacing to an existing product.

Configuration management is difficult when many different programs must interact
in a consistent fashion. Spreading programs across many nodes makes this problem
even more difficult. The user must maintain strict control over the version of each
program loaded on each node to ensure correct system operation. Components such as
communications packages that are used by several programs can further aggravate this
problem. Configuration management is a major factor motivating the single program
approach.

There are two reasons for data to move between ncdes, performance and surviv-
ability. Data can be moved to another node to balance the load across the system, as
discussed later. Data may also be replicated on many nodes to provide local data access
(which is faster) and to ensure the data survives the loss of a node. Replicated data,
however, may require very expensive support \DDM8&7".

Migration of code allows a node to do the processing originallv allotted to another
node. Allowing multiple nodes to perform any particular processing allows a system to
survive the loss of a node or to balance the load between nodes, therebv increasing overall
thronghput. Several issues should be examined if this mechanism is to be considered:

o How long does it take to move the code from one node to another.
e How much does this cost, and

o How are individual processor capabilities matched with the requirements for each
unit of work?

It is often less expensive to have an idle copy of the software waiting on all possible host
processors, triggering them as needed.

Load balancing involves shipping data and code between nodes to even the load on
all nodes and improve system throughput. This mechanism can also be used to allocate
extra resources to high priority work. This idea has some merit but is not practical for
all applications. Often, the best way to implement load balancing is to replicate the
software on all possible nodes and trigger execution of each copy by moving data onto
that node. In this case Joad balancing only requires the transfer of data, not code.
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27.2 Single Program Models

Many people are currently investigating the feasibility of a single program approach
for distributed systems. When a single program spans nodes that do not share a common
memory space, communication delays and communication errors between the elements of
a program become common events. The programming language and associated run-time
system must provide facilities to handle these situations.

The general distributed system issues discussed in Section 27.1 do not lose their im-
portance but become problems that must be solved by the run-time system (as opposed
to the application). While this can create problems for the designers of the run-time
system, it does relieve the application programmers of a significant burden. This shift in
responsibility may be a mixed blessing however; these decisions may affect the capabil-
ities of the final system. Therefore, application programmers may need to retain some
control over the resolution of these issues.

Most single program efforts involve designing a distributed processing language
such as Argus LISS8T . These languages generally have a construct that serves as a unit
for distribution: for Argus. the Guardian construct. The semantics of this construct
facilitate the actual distribution of program elements to different nodes. Ada does not
have a construct well suited to this purpose. This lack does not mean that Ada is
inadequate for this type of programming. only that the problems encountered will be
more difficult.

The first decision in distributing an Ada program is the unit of allocation. Several
options have been suggested:

o Tasks.
e Packages.
o Compilation units. and

e Unrestricted.

Choosing either tasks or packages leads to very constrained coding styles. For example,
if a task is chosen as the distribution unit. then each task must be associated with a
processing node. The only way to have any data or code resident on a node is to asso-
ciate this data/code with a task on this node. While this design allows communication
protocols to be built around the rendezvous mechanism, there are nevertheless serious
problems. First. tasks are created with no logical meaning. and second, code and data
are forced into tasks. even though tasks are not necessarily the most appropriate Ada
construct. Compilation units are a somewhat better choice but still constrain the dis-
tribution scheme. Honeywell ( COR84', 'KJER&T7') has chosen an intriguing method of
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allocation. They have developed a distribution language that allows the independent
allocation of each part of an Ada program.

Data allocation to a particular node can be done by any of the four methods men-
tioned above. In the first three cases, data is allocated as part of a large unit that
contains both program and data, whereas in the last case, data can be allocated inde-
pendently. Once data is allocated, two questions arise:

s “How does one reference data allocated to another node?”. and

o “Is replicated data supported?”

When a procedure on one node references data on another node, problems can occur.
First, the timing behavior of variable references will be unpredictable. More importantly,
there is no mechanism to handle either long delays in response or communication errors
involving the loss of the read request. Special purpose mechanisms can be built into a
distributed run-time system, but they will limit the portability of the resulting software.

The replication of data can have many desirable effects. but the support required
for it to meet Ada semantics would be very expensive in terms of processor power and
svstemn survivability. It may be necessary to introduce a separate piece of software
such as the Distributed Data Management System, discussed in DDM&7], to manage
replicated data objects.

Code must also be allocated to nodes. Any of the four general strategies can be
used. Code replication raises some interesting issues. There are two types of code in
Ada: code that cannot be executed concurrently (the body of a task'®). and code that
can be executed concurrently (evervthing else). There is no reason not to replicate a sub-
program. but replicating a task could significantly change the meaning of a program?°.
If the unit of allocation is a package and the package contains both procedures and
tasks, replication may be difficult. If the unit of allocation is a task. the concurrency of
associated procedures may be unnecessarily limited. If the unit of allocation is a task
(each task and its related procedures are allocated to a particular node) the concurrency
of associated procedures may be unnecessarily limited. When several task objects are
generated from a single task type, these objects can be on different nodes (and therefore
running concurrently). These objects can be allocated to the same node or different
nodes, however any single object can reside on one and only one node. The implication
is that in order to interact with one of these task objects the code must go through the
communication process on the node on which the task object resides. However, proce-

'9Ada task bodies are not reentrant.

20 Additional code would be needed to make sure that while the task is running on the first node, it
has not also started running on the second node. This check could be very important if the task in
question were ptotecting a shared resource.

27-4




dures associated with a task type can be replicated on each node on which a task object
of that type is located.

Communication to a remote procedure is similar to referencing a remote variable.
Ada does not prevent it, but there is nothing in Ada to define how communications
delays or errors should be handled.

Calling an entry on a remote task can cause serious problems if communication
errors are encountered. There are several semantic rules about entry calls that can
create problems. For example. the time limit on a timed entry call is defined in terms of
when the call enters the called task’s entry queue. not when it is issued. It is not clear
whether a time out could ever be declared due to lost messages or other communication
problems. If the call is delaved by the communication system. it is not clear who should
time the call out, or when the timeout should occur.

The single program approach has many strengths:
e Fase of application development,
e Reliability.

e Maintainability, and

e Portability.

It also has some important difficulties to overcome. Ada is not the perfect language for
this type of approach. especially when timing delays become long and cemmunication
faults are encountered. Ada can be adapted to this environment. however, and significant
work has been done to make this type of development in Ada a reality. Honevwell. among

others. has done significant work in this area.
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Section 28
Real-Time Issues in Ada

Real-time systems are computer systems that interact with ongoing real world
events. These systems differ from other computer applications in that timeliness is as
important as correctness. Historically the production of real-time software has been ap-
proached quite differently: while most software is structured according to its functional
requirements, real-time software is structured according to its timing requirements. This
development method has in turn led to high integration and maintenance costs.

Since the advent of Ada. there has been intense discussion of whether or not real-
time systems can be programmed in Ada. The principal aspects of this discussion focus
on whether traditional development techniques can map into Ada constructs and on
whether Ada implementations can generate efficient code. Ada has the features to sup-
port the traditional real-timme implementations, as discussed in Section 28.1. Further
improvements are needed both in the run-time technology and real-time system devel-
opment methods to meet the severe memory and time constraints. Recently scientists
have been investigating other ways of developing real-time software to reduce cost and
increase flexibility.

28.1 Evaluation of Cyclic Executive Approach

Classical real-time development involves the production of a evclic executive. In this

scheme. all processing is assigned specific times in a processing cvcle that is executed
repeatedly (see Figure 1).

Other traditional real-time development paradigms exist. Their development char-

acteristics are similar to those of a cyvelic system, though the specific mechanisms may
vary.

28.1.1 Description

A cyclic executive is a mechanism for prescheduling the processing in a system. It
provides a single static processing schedule that has been specifically tuned to meet the
timing requirements of the application. All processing to be performed is assigned time
in a schedule of finite duration. This schedule is repeated at a specified rate, known as
the major cycle. The major cycle is broken down into a number (usually a power of
two) of minor cycles. Each minor cycle has a processing frame assigned to it. A frame
is a list of processing elements to be performed during the associated minor cycle.

Thore are many variations of cyclic executives. including changing frame assign-
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ments during run-time, alternatives for dealing with frame overrun, and handling inter-
rupt and background activities.

Reasons for Choosing this Approach A cyclic executive approach produces code
that is efficient and predictable. These are key requirements for most real-time sys-
tems. Many real-time systems are based on periodic sampling and control for which
the cyclic executive is ideally suited. Cyclic systems are preplanned; every deadline is
anticipated and necessary resources are allocated in advance. Efficiency is achieved by
making scheduling decisions prior to run-time. Application code can be optimized to
take advantage of the inherent synchronization in cyclic systems. (Synchronization of
access to shared resources is done prior to run-time.) Tiniing behavior of a cyclic system
is easily analvzed: the time for each frame is the sum of the execution times of its com-
ponents: the time limit for each frame is a minor cycle. Finally. the behavior of a cyclic
system is very deterministic. because the schedule is the same every time. The timing
of the system cannot vary much. a highly desirable property for real-time svstems.

Ada Implementation Highlights Some varieties of cyclic executives are easily im-
plemented in Ada. others are more difficult. MacLauren MACS80 and Hood .HOO86
show how a number of cyclic executives can be written in Ada. Implementation prob-
fems are encountered when an executive must terminate or suspend overrunning frames.
These executives can be written if they are adequately supported by the underlying
run-time system. These are excellent candidates for a customized run-time system as
discussed in Edition 1 Section 3.3.

28.1.2 Strengths and Weaknesses

The cyclic executive approach is very good for producing real-time systems that
work. These systems are unfortunately very expensive. both to produce and especially
to maintain. Small changes in software function or computer hardware can mean massive
changes to the program. All possible error and overload conditions must be foreseen in
advance. Modifying just a few instructions may change the execution time characteristics
of the program so that the entire software must be recaiibrated. It is not uncommon for
seemingly insignificant changes to require multi-million dollar programming efforts (for
example, changing to a new processor that is identical to the old processor, except twice

as fast).
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In summary:

o A cyclic executive allows for precise real-time scheduling.

e Timing analysis is easy to perform and timing errors are detected early when a
frame overruns, and

e Cyclic executives are expensive to produce and very expensive to maintain.

28.2 Evaluation of Data Driven Approaches

Recent work has focused on systems that meet real-time requirements without the
use of a static scheduling structure like a cyclic executive. This work is exploring sev-
eral new technologies: data flow machines, functional languages, parallel processing
languages, etc. Ada itself reflects an attempt to move in this direction.

28.2.1 Description

All efforts in the data driven methods have one goal: to restore the functional con-
cept to real-time systems. The techniques proposed to engineer this restructuring vary
considerably. Functional languages and data flow machines depart from the Von Neu-
mann model of programming by taking the view that data arrival causes an instruction
to be fetched and executed. (Von Neumann machines view the instruction as causing
data to be fetched and operated upon.) The other approaches are less extreme but cen-
ter around similar ideas. In all approaches, the flow of data through a system becomes
an important factor in system scheduling decisions. It is the presence of data which
triggers the scheduler. The analogue in Ada is that tasks which are waiting for data
to be passed through a rendezvous are not eligible for execution. Thus the schedule is
nondeterministic, introducing an element of unpredictability into the system.

Reasons for Choosing this Approach The data driven type of approach creates
real-time software with a functional structure. This software is easier and cheaper to
create and maintain. The principal reasons are that the software is inherently more
flexible and more adaptable. These properties not only lower the cost of today’s systems.
but without them, many future systems (such as the SDI or NASA's Space Station) will
not be possible. These systems are too large to develop as a single piece: the software
must be able to adapt to an evolving environment.

Ada Implementation Highlights Implementations based on the data driven model
use Ada tasking extensively. Processing is coded as small Ada tasks that receive data.
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process it, and send data out as they finish. If references to shared resources (data and
hardware) are allowed at all, they are strictly controlled by monitor tasks. Specialized
run-time system optimizations of elements common to this type of system (such as
monitor tasks) can greatly improve the speed of this type of system (see Edition 1
Section 3.3).

28.2.2 Strengths and Weaknesses

This type of system does not suffer from the problems of a cyclic system. The
data driven approach enjovs the benefits of a highly modular structure. It is robust in
the face of changes, is easy to maintain. and easy to adapt to new environments. On
the other hand it lacks the efficiency, temporal determinism. predictability, and ease of
timing verification and testing that distinguish a cyclic system. Its heavy reliance on
Ada tasking incurs the penalty of frequent context switching overhead needed to support
the many rendezvous. As the data load on the system increases. the likelihood of the
svstem thrashing and becoming nonresponsive increases.

28.3 Temporal Models

The critical nature of timing requirements for real-time svstems has motivated re-

' By developing sophisticated timing analysis

search in the arca of temporal models.?
tools. the process of tuning the software to meet its timing constraints can be automated.
Current investigations center on hybrid systems which use a data driven development
approach and a cyclic run-time approach. The software methodology key lies in the
development of an abstract style of data driven programming, without unnecessarily
constraining the temporal behavior of a program. The key to to the run-time compo-
nent lies in creating a method of transforming code written in this style into a cyclic
executive syvstem. The data driven code provides the flexibility and adaptability, and
the transformation allows the final system to take advantage of the predictability and

determinism of the cyclic structure.

28.3.1 Processing Models

In order for this approach to work. a programming style must be defined which
allows the programmer to specify all temporal properties nece.sary for program correct-
ness but which does not otherwise constrain the program’s timing. This approach has
been called the processing model. This model defines a prograinmer view of a generic
computer resource. Specific machine capabilities and specific timing requirements are

2IModel of the timing characteristics of a piece of software.
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introduced during the transformational step, through which detailed timing behavior
is derived. The processing model is similar in many respects to a functional language;
however, it is a development abstraction only, not a run-time model.

28.3.2 Transformational Techniques

Several people have explored transformational programming techniques, Cheatham
CHE84, Boyle B&MB84, etc. Transformation into a cyclic executive can build on
these techniques combined with the methods used by today’s real-time designers to
create cyclic systems. Ward 'WAR78' discusses a system that uses these techniques to
transform very high level specifications of control systems into real-time systems.

A method of tuning software need not be limited to cyvclic transformations. While
there may always be a class of real-time systems that require cyclic run-time perfor-
mance, there are other systems that do not require such extreme measures. Many of
these systems would benefit from the flexibility of a run-time scheduler?. These systems
still require tuning. but not to the same extent. For these systems other tuning trans-
formations can be used. These might include replacing monitor tasks with semaphores.
or simplifving groups of tasks using program inversion techniques iRAJ83!. Using these
techniques. a system can be tuned until the appropriate level of predictability and efhi-
cicncy has been reached.

28.4 Run-Time Environment Technology

It is generally recognized that Ada run-time support environments are immature.
Shortfalls exist in performance, functionality, and flexibility. Ada run-time systems
provide the needed support to pass the Ada Compiler Validation Capability tests hut
lack optimizations for memory usage and throughput.

The problem is not an Ada language problem but a run-time support problem.
The requirements for embedded real-time environments are being analvzed in order to
develop an efficient Ada run-time model. For example. by defining in the run-time system
a standard set of low-level tasking primitives supporting deterministic scheduling. the
programmer gains better control of task scheduling and, therefore, of system timing. An
international workshop was conducted in the United Kingdom in May 1987 to discuss
technical issues and to recommend solutions, where a consensus could be achieved. The
workshop Proceedings 'WORS87] are available through Ada Letters. The discussions
addressed:

227 run-time scheduler is that portion of the operating system which determines the order of execution
of application code and system software services.
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predictable scheduling,

o tash.ug efficiency,
e distributed processing. and
o asvnchronous exceptions.

A second Workshop is planned for 1988.

The SIGAda Working Group investigating these issues, ARTEWG, has produced
four documents??:

o 1 Canonical Model and Taronomy of Ada Run-time Environments,

The Catalogue of Ada Run-time Implementation Dependencies,

The Cataloguc of Interface Features and Option for the Ada Run-time Environ-

ment. and

o The First Annual Survey of Mission Critical Application Requirements.

These documents may be obtained by writing to:

Mike Kamrad

Honevwell Syvstems and Research Center
M/S MNIT-2351

3660 Marshall St. NE

Minneapolis. MN 55518

(612) T82-7321
mkamrad« AJPO SEL.CMU.EDU

On-line information on ARTEWG activities is available in the directory /artnews on the
AJPO.SEL.CMU.EDU machine.

23’Thf" rcsearc‘h which led to these newly released publications is described in Edition 1, Section 3.3.2.
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Section 29
Contractor Evaluation

In evaluating a contractor, certain general qualities should be present. The contrac-
tor should:

e have a complete life-cycle oriented plan for management, configuration manage-

ment, and quality assurance,
e demonstrate a willingness to apply and write reusable components,
e show correctness and usage standards for code,
e practice as well as preach methodologies,

o have good knowledge of softwars tools and methodologies to promote smooth tran-

sitions between phases, and

e have well-trained and supervised personnel.

Evaluating program development plans or on-going work should not be done in
a vacuum but should be done in the context of known trends from previous program
evaluations. Metrics are being used to evaluate projects, and the resulting information
from these can be used to assess contractor development plans and on-going efforts.

29.1 Software Engineering Exercise

The Software Engineering Exercise (SEE) was developed by MITRE to aid in bidder
evaluation for the Air Force Electronic Systems Division (ESD) [AMNBS87]. It is used to
assess a contractor's software development approach, give a preview of what will be
developed during the contract, and identify potential problems.

The first time it was applied to a source selection was for the Command Center
Processing and Display System - Replacement (CCPDS-R) program. The government
identified risks that would be associated with the use of Ada, in particular the ability
to use Ada effectively at the early stages of software development.

For the CCPDS-R program. each offerer was requested to “provide a prototypi-
cal example of the bidder’s proposed software development approach.” The purpose of
the SEE was to allow the government to assess the contractor’s approach through its
demonstration. The contractor was not expected to prototype an actual system but
to prototype the practice of his methodology. The exercise was conducted following

29-1




DoD-STD-2167 guidelines. The government evaluated neither all the phases of the life
cycle nor the support functions such as quality assurance and configuration manage-
ment. The evaluation process stressed the contractor’s approach to management, and
to the requirements and design analyses phases, as reflected in the products required of
the participants.

MITRE performed a dry run of the Software Engineering Exercise prior to requcst-
ing it of the offerers. The dry run helped the government determine what to request of
the offerer, what guidelines to give the offerer, and development of technical evaluation
guidelines. Also from the dry run it was reaffirmed that the following three things require
enhanced management attention: requirements analysis, Ada tasking, and managing a
development team.

The following items were stated conclusious learned from the SEE:

o It was an excellent training mechanism for the government participants.

e It very successfully met its stated objectives,

o It resulted in improved SDPs and more knowledgeable offerer stafl.

e It required considerable government preparation and careful evaluation. and

o It was a software engineering exercise, not an Ada exercise.

If SEE were used on a different project, it would need to be modified to reflect the
requirements of that particular project. For the CCPDS-R program the SEE was used
during source selection, although several ESD programs are considering incorporating
SEE as a contract task.

29.2 Ada Decision Matrix

Contractor evaluation involves risk assessment along technical, acquisition and eco-
nomic lines. A disciplined, objective method of analyvzing the risks of using Ada on a
program is needed. A probability based approach has been developed by The Aerospace
Corporation and documented in |BAK84|. This work, known as the Ada Decision Ma-
trix. has since been automated. The point of contact is:

Dixie B. Baker

The Aerospace Corporation
M5-562

El Segundo, CA 90245
(213) 336-4059
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The Ada Decision Matrix involves a project risk worksheet and a risk priority rating
worksheet. The project risk potential is essentially a measure of the probability of
success, in other words the probability that a given factor is not a risk factor for the
project. By weighting the counfidence levels in individual criteria with their priority. an
overall confidence rating is computed. This final number is nof an indication of the
likelihood of success or failure of & particular project. It i< an indication of whether the
decision to use Ada will entail low or high risk. This Ada risk must then be evaluated
against other. non Ada-related risk factors previously identified for the project. Ideally
severa! evaluators should comnlete the Decision Matrix in order to remove individual
biases for or against the use of Ada.

Fach worksheet itemis graded on a scale of five confidence levels. ranging from “very
Jow™ {a rating of 0.0) to “very high” {a rating of 1.0). Guidance criteria are provided
to aid the evaluator in <electing the appropriate rating. Topics addressed include tool
availability and quality. stafling. training. life cvcle management procedures. and cost.
In order 1o arnive at the probability of success for the technical factors. the evaluator
may first want to probe further by asking the kinds of detailed questions found in reports

on Ada compiier evaluation. suck as KEA>T and HHNMSG .

29.3 Process Evaluation

It 15 frequently said that the onlyv way to meet the ever increasing demand for
coftware is to increase productivity. Increased productivity is achieved when higher
quality software with fewer errors and lower maintenance costs is produced. Judicious use
of metrics helps the prograni manage t monitor the status of @ project, the productivity

of 1tz stafl. and the quality of the cutpurs,

29.3.1 Metrics

|'hie application of preductivity measures and quality standards has been the focus
of mmch attention lately. 1n particular. in the context of contractor evaluation. The
Defense Science Board Task Force Report on Military Software DSB&7 | for example.
strongly recommends both the use of metries to assess software quality and progress and
their routine incorporation into contracte,

The Air Force Electronic Svstems Division (ESD) has developed a set of software
reporting metrics. This effort was motivated by software acquisition goals as well as the
Air Force Systemn Command Product Assurance Initiative. The metrics are designed
to mieasure technical and management aspects of the coding. testing. and operational

phases of software devejopment KENXT . These metries include:
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e program size (in lines of code).
o staffing,

e software complexity,

e development progress.

® testing progress,

® computer resource.

s program volatility.

s iucremental release.

e code change rate, and

e problem reports.

The use of these metrics needs to be tailored according to the objectives of a project.
Metrics are statistics and. therefore. they should not be interpreted as absolute measures
of progress. They are good trend indicators and can aid the government in monitoring
contract health. In all cases. it is Important that the government and contractor com-
municate clearly and understand one another’s goals and positions. When metrics are

used. both parties must agree on the purpose of the metric. the data to he gathered.
and the defiuition of the metric.

29.3.2 Contractor Capabilities

Prior to contract award. contractor evaluation requires evaluation of the proposed
processes to produce the software. The premise i< that given a quality development
process. at the very least. acceptable software will be written. Assuming that the same
processes were used on other projects. it may be possible to evaluate the quality of those

products in order to extrapolate whether the organization produces reliable software
within cost and budget.

Management control is a cornerstone of the software process. Financial control of
the project alone is not sufficient. Program management is required not only to coordi-
nate resources but also to enforce the use of software engineering standards. methods.
and tools. Management must address the software issues, including methods, reusability,
efficiency, correctness, etc. The management function undertakes planning the softv-are
project. and the manager’s responsibilities include both creating a realistic schedule and
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developing contingency plans. Schedules should not be based on the assumption of per-
fect software after the first compilation. Test failures, tool inadequacies, and resource
mismatches should be accounted for in the planning stages.

The quality goals and acceptance criteria for the project must be established at the
beginning of the project, before a contract is even signed. The contractor’s management
plans should show what methods will be used to achieve which goals and what corrective
actions will be taken when a goal is not met. The metrics to be used to validate
progress on individual goals should be stated. Moreover. the plan should address how
the manager will use the metrics to exercise control over the project, for example, to
revise the estimate to complete. In other words, measuring aspects of a project is not
sufficient; the use of the metrics should be incorporated into the management plan.

The software methods used should be clearly outlined. The methods selected should
he matched to the application area. For example. for extremelv complex software. the
methodology needs detailed guidarnce for analvzing the “middle part;” it should not be
vague. relying on expertise and magic instead of discipline. The methodology proposed
should be suited to the use of Ada as a design and programming language. Specifically.
it should address the allocation of software among the different classes of Ada program

units. in particular the choice of packages and tasks.

The methodology should describe techuical progress metrics in order to track what
portion of the analvsis. design. testing. ete.. is complete. Often such metrics are ex-
pressed in terms of the manager’'s idea of what percent of the activity is complete. Such
measures tend to be mmaccurate. A more appropriate measure is based on earned value.
for example. number of subsysteme designed. number of modules on which code reading
has been done. or milestones completed® . Milestones should be tailored to the evolu-
tionary nature of Ada development. Software development phases overlap, making it
hard 1o freeze all modules at an identical Tevel of refinement. Critical modules should
be designed. coded. and tested first. implving that they mayv be ready before other

subsyvstems are fullv designed.

Review of the draft products and their retinements 1s needed. This review should he
performed by qualified technical personnel: its purpose is to exchange ideas and uncover
errors as early as possible. It is Iikely that several methods will be needed in order to
cover the entire software development life cyvcle. The outputs of one may not necessarily
be in the correct input form for the succeeding method: therefore, careful thought is
reguired on how these methods will be integrated. Automation of methods is desirable
in order to facilitate tracking and updating of the products. Such automation should
include some sort of machine processing of the product in order to verify conformance

2In addition to major program milestones such as preliminary and critical design reviews, the man-
agement plan should identify individual mini-milestones within tasks. for which “credit” is taken as
thev are completed. Examples include monthiv status reports. internal publication of white papers.
and subsystem start and completion
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to the rules of the method.

Project personnel should be trained in the process and methods to be used on
the project. The degree and level of training should be appropriate to the individual’s
role in the project. For example, the program manager should not take a three week
Ada language course, whereas intensive training in a specific design analysis method is
appropriate for senior project engineers.

Quality assurance control should be exercised through an independent reporting
structure. Quality procedures should be DoD-STD-2167 compliant, addressing the prod-
ucts specific to each phase, including reviews, milestones. code and documents. They
should specify acceptance criteria for the individual software-related items and detail
checklists to be followed to verify that these standards are being met. There should be
procedures in place to evaluate the application of the selected software methodology as
well as to exercise management and technical control over subcontractor performance.

The contractor should have a comprehensive configuration management plan. The
important criterion here is that configuration management be applied to all phases of
the software life cycle. Typically, the source code configurations are carefully managed,
but insufficient care is given to the management of the other elements of the product
being developed. Documentation at all levels should reflect the software as built; for
cxample. design information and user manuals should be updated when a code change
is incorporated.
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